688 research outputs found
Analysis of the effect of locally applied inhomogeneous static magnetic field-exposure on mouse ear edema - a double blind study
The effect static magnetic field (SMF)-exposure may exert on edema development has been investigated. A 6 h long whole-body (WBSMF) or local (LSMF), continuous, inhomogeneous SMF-exposure was applied on anesthetized mice in an in vivo model of mustard oil (MO)-induced ear edema. LSMF was applied below the treated ear, below the lumbar spine, or below the mandible. Ear thickness (v) was checked 8 times during the exposure period (at 0, 0.25, 1, 2, 3, 4, 5, and 6 h). The effect size of the applied treatment (eta) on ear thickness was calculated by the formula eta = 100% x (1-vj/vi), where group i is the control group and j is the treated group. Results showed that MO treatment in itself induced a significant ear edema with an effect of 9% (p11% in both cases compared to SMF-exposure alone (p<0.001). In these cases SMF-exposure alone without MO treatment reduced ear thickness significantly (p<0.05), but within estimated experimental error. In cases of LSMF-exposure on the head, a significant SMF-exposure induced ear thickness reduction was found (eta = 5%, p<0.05). LSMF-exposure on the spine affected ear thickness with and without MO treatment almost identically, which provides evidence that the place of local SMF action may be in the lower spinal region
Computer-assisted proofs for radially symmetric solutions of PDEs
We obtain radially symmetric solutions of some nonlinear (geo-
metric) partial differential equations via a rigorous computer-assisted method.
We introduce all main ideas through examples, accessible to non-experts. The
proofs are obtained by solving for the coefficients of the Taylor series of the
solutions in a Banach space of geometrically decaying sequences. The tool that
allows us to advance from numerical simulations to mathematical proofs is the
Banach contraction theorem
Computer-assisted proofs for radially symmetric solutions of PDEs
We obtain radially symmetric solutions of some nonlinear (geo-
metric) partial differential equations via a rigorous computer-assisted method.
We introduce all main ideas through examples, accessible to non-experts. The
proofs are obtained by solving for the coefficients of the Taylor series of the
solutions in a Banach space of geometrically decaying sequences. The tool that
allows us to advance from numerical simulations to mathematical proofs is the
Banach contraction theorem
A fresh look at the evolution and diversification of photochemical reaction centers
In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers
A search for new members of the β Pictoris, Tucana–Horologium and ε Cha moving groups in the RAVE data base
We report on the discovery of new members of nearby young moving groups, exploiting the full power of combining the Radial Velocity Experiment (RAVE) survey with several stellar age diagnostic methods and follow-up high-resolution optical spectroscopy. The results include the identification of one new and five likely members of the β Pictoris moving group, ranging from spectral types F9 to M4 with the majority being M dwarfs, one K7 likely member of the ε Cha group and two stars in the Tucana–Horologium association. Based on the positive identifications, we foreshadow a great potential of the RAVE data base in progressing towards a full census of young moving groups in the solar neighbourhood
Detection and Removal of Biases in the Analysis of Next-Generation Sequencing Reads
Since the emergence of next-generation sequencing (NGS) technologies, great effort has been put into the development of tools for analysis of the short reads. In parallel, knowledge is increasing regarding biases inherent in these technologies. Here we discuss four different biases we encountered while analyzing various Illumina datasets. These biases are due to both biological and statistical effects that in particular affect comparisons between different genomic regions. Specifically, we encountered biases pertaining to the distributions of nucleotides across sequencing cycles, to mappability, to contamination of pre-mRNA with mRNA, and to non-uniform hydrolysis of RNA. Most of these biases are not specific to one analyzed dataset, but are present across a variety of datasets and within a variety of genomic contexts. Importantly, some of these biases correlated in a highly significant manner with biological features, including transcript length, gene expression levels, conservation levels, and exon-intron architecture, misleadingly increasing the credibility of results due to them. We also demonstrate the relevance of these biases in the context of analyzing an NGS dataset mapping transcriptionally engaged RNA polymerase II (RNAPII) in the context of exon-intron architecture, and show that elimination of these biases is crucial for avoiding erroneous interpretation of the data. Collectively, our results highlight several important pitfalls, challenges and approaches in the analysis of NGS reads
Gene expression patterns vary in clonal cell cultures from Rett syndrome females with eight different MECP2 mutations
BACKGROUND: Females with the neurological disorder Rett syndrome are heterozygous for mutations in X-linked MECP2 that encodes methyl-CpG binding protein 2 (MeCP2) thought to act as a transcriptional repressor. To identify target genes for MeCP2 modulation, we studied global gene expression in single cell-derived wild-type and mutant MECP2 expressing fibroblast clones with four common mutations (R106W, R306C, 705delG, 1155del32) and in lymphoblastoid cell lines (LCLs) that included four mutant MeCP2 (T158M, 803delG, R168X and 1159del28) expressing, and five (1159del28, R106W, R255X, 803delG, 803delG) wild-type MeCP2 expressing lines. METHODS: Clonality and mutation status were verified by androgen receptor methylation assays for X-inactivation and by sequencing MECP2 transcripts. Expression studies were done with oligonucleotide microarrays (Affymetrix U95) and verified with real-time quantitative RT-PCR using Sybr Green. RESULTS: Expression of 49 transcripts was increased, and expression of 21 transcripts was decreased, in at least 3 of 4 mutant/wild-type fibroblast comparisons. Transcript levels of 11 genes, determined by quantitative RT-PCR, were highly correlated with the microarray data. Therefore, multiple additional clones from two Rett individuals were tested by RT-PCR only. Striking expression differences were found in both mutant and wildtype MeCP2 expressing clones. Comparing expression profiles of lymphoblastoid cell lines yielded 16 differentially expressed genes. CONCLUSIONS: MeCP2 deficiency does not lead to global deregulation of gene expression. Either MeCP2's in vivo function does not involve widespread transcriptional repression, or its function is redundant in cell types that also express other methyl-CpG binding proteins. Our data suggest that clonal fibroblast strains may show substantial inter-strain variation, making them a difficult and unstable resource for genome-wide expression profiling studies
Artificial Modulation of the Gating Behavior of a K+ Channel in a KvAP-DNA Chimera
We present experiments where the gating behavior of a voltage-gated ion channel is modulated by artificial ligand binding. We construct a channel-DNA chimera with the KvAP potassium channel reconstituted in an artificial membrane. The channel is functional and the single channel ion conductivity unperturbed by the presence of the DNA. However, the channel opening probability vs. bias voltage, i.e., the gating, can be shifted considerably by the electrostatic force between the charges on the DNA and the voltage sensing domain of the protein. Different hybridization states of the chimera DNA thus lead to different response curves of the channel
Quantitative trait loci and candidate gene mapping of aluminum tolerance in diploid alfalfa
Aluminum (Al) toxicity in acid soils is a major limitation to the production of alfalfa (Medicago sativa subsp. sativa L.) in the USA. Developing Al-tolerant alfalfa cultivars is one approach to overcome this constraint. Accessions of wild diploid alfalfa (M. sativa subsp. coerulea) have been found to be a source of useful genes for Al tolerance. Previously, two genomic regions associated with Al tolerance were identified in this diploid species using restriction fragment length polymorphism (RFLP) markers and single marker analysis. This study was conducted to identify additional Al-tolerance quantitative trait loci (QTLs); to identify simple sequence repeat (SSR) markers that flank the previously identified QTLs; to map candidate genes associated with Al tolerance from other plant species; and to test for co-localization with mapped QTLs. A genetic linkage map was constructed using EST-SSR markers in a population of 130 BC(1)F(1) plants derived from the cross between Al-sensitive and Al-tolerant genotypes. Three putative QTLs on linkage groups LG I, LG II and LG III, explaining 38, 16 and 27% of the phenotypic variation, respectively, were identified. Six candidate gene markers designed from Medicago truncatula ESTs that showed homology to known Al-tolerance genes identified in other plant species were placed on the QTL map. A marker designed from a candidate gene involved in malic acid release mapped near a marginally significant QTL (LOD 2.83) on LG I. The SSR markers flanking these QTLs will be useful for transferring them to cultivated alfalfa via marker-assisted selection and for pyramiding Al tolerance QTLs
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
- …