65 research outputs found

    Gender plays no role in student ability to perform on computer-based examinations

    Get PDF
    BACKGROUND: To see if there is a difference in performance when students switch from traditional paper-and-pencil examinations to computer-based examinations, and to determine whether there are gender differences in student performance in these two examination formats. METHODS: This study involved first year medical students at the University of Illinois at Urbana-Champaign over three Academic Years 2002–03/2003–04 and 2003–05. Comparisons of student performance by overall class and gender were made. Specific comparisons within courses that utilized both the paper-and-pencil and computer formats were analyzed. RESULTS: Overall performance scores for students among the various Academic Years revealed no differences between exams given in the traditional pen-and-paper and computer formats. Further, when we looked specifically for gender differences in performance between these two testing formats, we found none. CONCLUSION: The format for examinations in the courses analyzed does not affect student performance. We find no evidence for gender differences in performance on exams on pen-and-paper or computer-based exams

    Severe Airway Epithelial Injury, Aberrant Repair and Bronchiolitis Obliterans Develops after Diacetyl Instillation in Rats

    Get PDF
    Bronchiolitis obliterans (BO) is a fibrotic lung disease that occurs in a variety of clinical settings, including toxin exposures, autoimmunity and lung or bone marrow transplant. Despite its increasing clinical importance, little is known regarding the underlying disease mechanisms due to a lack of adequate small animal BO models. Recent epidemiological studies have implicated exposure to diacetyl (DA), a volatile component of artificial butter flavoring, as a cause of BO in otherwise healthy factory workers. Our overall hypothesis is that DA induces severe epithelial injury and aberrant repair that leads to the development of BO. Therefore, the objectives of this study were 1) to determine if DA, delivered by intratracheal instillation (ITI), would lead to the development of BO in rats and 2) to characterize epithelial regeneration and matrix repair after ITI of DA.Male Sprague-Dawley rats were treated with a single dose of DA (125 mg/kg) or sterile water (vehicle control) by ITI. Instilled DA resulted in airway specific injury, followed by rapid epithelial regeneration, and extensive intraluminal airway fibrosis characteristic of BO. Increased airway resistance and lung fluid neutrophilia occurred with the development of BO, similar to human disease. Despite rapid epithelial regeneration after DA treatment, expression of the normal phenotypic markers, Clara cell secretory protein and acetylated tubulin, were diminished. In contrast, expression of the matrix component Tenascin C was significantly increased, particularly evident within the BO lesions.We have established that ITI of DA results in BO, creating a novel chemical-induced animal model that replicates histological, biological and physiological features of the human disease. Furthermore, we demonstrate that dysregulated epithelial repair and excessive matrix Tenacin C deposition occur in BO, providing new insights into potential disease mechanisms and therapeutic targets

    Genetic Determination and Linkage Mapping of Plasmodium falciparum Malaria Related Traits in Senegal

    Get PDF
    Plasmodium falciparum malaria episodes may vary considerably in their severity and clinical manifestations. There is good evidence that host genetic factors contribute to this variability. To date, most genetic studies aiming at the identification of these genes have used a case/control study design for severe malaria, exploring specific candidate genes. Here, we performed a family-based genetic study of falciparum malaria related phenotypes in two independent longitudinal survey cohorts, as a first step towards the identification of genes and mechanisms involved in the outcome of infection. We studied two Senegalese villages, Dielmo and Ndiop that differ in ethnicity, malaria transmission and endemicity. We performed genome-scan linkage analysis of several malaria-related phenotypes both during clinical attacks and asymptomatic infection. We show evidence for a strong genetic contribution to both the number of clinical falciparum malaria attacks and the asymptomatic parasite density. The asymptomatic parasite density showed linkage to chromosome 5q31 (LOD = 2.26, empirical p = 0.0014, Dielmo), confirming previous findings in other studies. Suggestive linkage values were also obtained at three additional chromosome regions: the number of clinical malaria attacks on chromosome 5p15 (LOD = 2.57, empirical p = 0.001, Dielmo) and 13q13 (LOD = 2.37, empirical p = 0.0014 Dielmo), and the maximum parasite density during asymptomatic infection on chromosome 12q21 (LOD = 3.1, empirical p<10−4, Ndiop). While regions of linkage show little overlap with genes known to be involved in severe malaria, the four regions appear to overlap with regions linked to asthma or atopy related traits, suggesting that common immune related pathways may be involved

    Wine and other alcohol consumption and risk of ovarian cancer in the California Teachers Study cohort

    Get PDF
    OBJECTIVE: Whether alcohol consumption influences ovarian cancer risk is unclear. Therefore, we investigated the association between alcohol intake at various ages and risk of ovarian cancer. METHODS: Among 90,371 eligible members of the California Teachers Study cohort who completed a baseline alcohol assessment in 1995–1996, 253 women were diagnosed with epithelial ovarian cancer by the end of 2003. Multivariate Cox proportional hazards regression analysis was performed to estimate relative risks (RRs) and 95% confidence intervals (CIs). RESULTS: Consumption of total alcohol, beer, or liquor in the year prior to baseline, at ages 30–35 years, or at ages 18–22 years was not associated with risk of ovarian cancer. Consumption of at least one glass per day of wine, compared to no wine, in the year before baseline was associated with increased risk of developing ovarian cancer: RR = 1.57 (95% CI 1.11–2.22), P(trend) = 0.01. The association with wine intake at baseline was particularly strong among peri-/post-menopausal women who used estrogen-only hormone therapy and women of high socioeconomic status. CONCLUSIONS: Alcohol intake does not appear to affect ovarian cancer risk. Constituents of wine other than alcohol or, more likely, unmeasured determinants of wine drinking were associated with increased risk of ovarian cancer

    PolyQ Repeat Expansions in ATXN2 Associated with ALS Are CAA Interrupted Repeats

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating, rapidly progressive disease leading to paralysis and death. Recently, intermediate length polyglutamine (polyQ) repeats of 27–33 in ATAXIN-2 (ATXN2), encoding the ATXN2 protein, were found to increase risk for ALS. In ATXN2, polyQ expansions of ≥34, which are pure CAG repeat expansions, cause spinocerebellar ataxia type 2. However, similar length expansions that are interrupted with other codons, can present atypically with parkinsonism, suggesting that configuration of the repeat sequence plays an important role in disease manifestation in ATXN2 polyQ expansion diseases. Here we determined whether the expansions in ATXN2 associated with ALS were pure or interrupted CAG repeats, and defined single nucleotide polymorphisms (SNPs) rs695871 and rs695872 in exon 1 of the gene, to assess haplotype association. We found that the expanded repeat alleles of 40 ALS patients and 9 long-repeat length controls were all interrupted, bearing 1–3 CAA codons within the CAG repeat. 21/21 expanded ALS chromosomes with 3CAA interruptions arose from one haplotype (GT), while 18/19 expanded ALS chromosomes with <3CAA interruptions arose from a different haplotype (CC). Moreover, age of disease onset was significantly earlier in patients bearing 3 interruptions vs fewer, and was distinct between haplotypes. These results indicate that CAG repeat expansions in ATXN2 associated with ALS are uniformly interrupted repeats and that the nature of the repeat sequence and haplotype, as well as length of polyQ repeat, may play a role in the neurological effect conferred by expansions in ATXN2

    Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke.

    Get PDF
    OBJECTIVE: For 3,670 stroke patients from the United Kingdom, United States, Australia, Belgium, and Italy, we performed a genome-wide meta-analysis of white matter hyperintensity volumes (WMHV) on data imputed to the 1000 Genomes reference dataset to provide insights into disease mechanisms. METHODS: We first sought to identify genetic associations with white matter hyperintensities in a stroke population, and then examined whether genetic loci previously linked to WMHV in community populations are also associated in stroke patients. Having established that genetic associations are shared between the 2 populations, we performed a meta-analysis testing which associations with WMHV in stroke-free populations are associated overall when combined with stroke populations. RESULTS: There were no associations at genome-wide significance with WMHV in stroke patients. All previously reported genome-wide significant associations with WMHV in community populations shared direction of effect in stroke patients. In a meta-analysis of the genome-wide significant and suggestive loci (p < 5 × 10(-6)) from community populations (15 single nucleotide polymorphisms in total) and from stroke patients, 6 independent loci were associated with WMHV in both populations. Four of these are novel associations at the genome-wide level (rs72934505 [NBEAL1], p = 2.2 × 10(-8); rs941898 [EVL], p = 4.0 × 10(-8); rs962888 [C1QL1], p = 1.1 × 10(-8); rs9515201 [COL4A2], p = 6.9 × 10(-9)). CONCLUSIONS: Genetic associations with WMHV are shared in otherwise healthy individuals and patients with stroke, indicating common genetic susceptibility in cerebral small vessel disease.Funding for collection, genotyping, and analysis of stroke samples was provided by Wellcome Trust Case Control Consortium-2, a functional genomics grant from the Wellcome Trust (DNA-Lacunar), the Stroke Association (DNA-lacunar), the Intramural Research Program of National Institute of Ageing (Massachusetts General Hospital [MGH] and Ischemic Stroke Genetics Study [ISGS]), National Institute of Neurological Disorders and Stroke (Siblings With Ischemic Stroke Study, ISGS, and MGH), the American Heart Association/Bugher Foundation Centers for Stroke Prevention Research (MGH), Deane Institute for Integrative Study of Atrial Fibrillation and Stroke (MGH), National Health and Medical Research Council (Australian Stroke Genetics Collaborative), and Italian Ministry of Health (Milan). Additional support for sample collection came from the Medical Research Council, National Institute of Health Research Biomedical Research Centre and Acute Vascular Imaging Centre (Oxford), Wellcome Trust and Binks Trust (Edinburgh), and Vascular Dementia Research Foundation (Munich). MT is supported by a project grant from the Stroke Association (TSA 2013/01). HSM is supported by an NIHR Senior Investigator award. HSM and SB are supported by the NIHR Cambridge University Hospitals Comprehensive Biomedical Research Centre. VT and RL are supported by grants from FWO Flanders. PR holds NIHR and Wellcome Trust Senior Investigator Awards. PAS is supported by an MRC Fellowship. CML’s research is supported by the National Institute for Health Research Biomedical Research Centre (BRC) based at Guy's and St Thomas' NHS Foundation Trust and King's College London, and the BRC for Mental Health at South London and Maudsley NHS Foundation Trust and King’s College London. This is the final version of the article. It first appeared from Wolters Kluwer via http://dx.doi.org/10.1212/WNL.000000000000226

    Creation of an open-access, mutation-defined fibroblast resource for neurological disease research.

    Get PDF
    Our understanding of the molecular mechanisms of many neurological disorders has been greatly enhanced by the discovery of mutations in genes linked to familial forms of these diseases. These have facilitated the generation of cell and animal models that can be used to understand the underlying molecular pathology. Recently, there has been a surge of interest in the use of patient-derived cells, due to the development of induced pluripotent stem cells and their subsequent differentiation into neurons and glia. Access to patient cell lines carrying the relevant mutations is a limiting factor for many centres wishing to pursue this research. We have therefore generated an open-access collection of fibroblast lines from patients carrying mutations linked to neurological disease. These cell lines have been deposited in the National Institute for Neurological Disorders and Stroke (NINDS) Repository at the Coriell Institute for Medical Research and can be requested by any research group for use in in vitro disease modelling. There are currently 71 mutation-defined cell lines available for request from a wide range of neurological disorders and this collection will be continually expanded. This represents a significant resource that will advance the use of patient cells as disease models by the scientific community

    Parkinson's Disease: Basic Pathomechanisms and a Clinical Overview

    Get PDF
    PD is a common and a debilitating degenerative movement disorder. The number of patients is increasing worldwide and as yet there is no cure for the disease. The majority of existing treatments target motor symptom control. Over the last two decades the impact of the genetic contribution to PD has been appreciated. Significant discoveries have been made, which have advanced our understanding of the pathophysiological and molecular basis of PD. In this chapter we outline current knowledge of the clinical aspects of PD and the basic mechanistic understanding

    p62/ SQSTM

    No full text
    corecore