24 research outputs found
Pollen Competition as a Reproductive Isolation Barrier Represses Transgene Flow between Compatible and Co-Flowering Citrus Genotypes
Background/Objective: Despite potential benefits granted by genetically modified (GM) fruit trees, their release and commercialization raises concerns about their potential environmental impact, and the transfer via pollen of transgenes to cross-compatible cultivars is deemed to be the greatest source for environmental exposure. Information compiled from field trials on GM trees is essential to propose measures to minimize the transgene dispersal. We have conducted a field trial of seven consecutive years to investigate the maximum frequency of pollen-mediated crop-to-crop transgene flow in a citrus orchard, and its relation to the genetic, phenological and environmental factors involved. Methodology/Principal Findings: Three different citrus genotypes carrying the uidA (GUS) tracer marker gene (pollen donors) and a non-GM self-incompatible contiguous citrus genotype (recipient) were used in conditions allowing natural entomophilous pollination to occur. The examination of 603 to 2990 seeds per year showed unexpectedly low frequencies (0.17-2.86%) of transgene flow. Paternity analyses of the progeny of subsets of recipient plants using 10 microsatellite (SSR) loci demonstrated a higher mating competence of trees from another non-GM pollen source population that greatly limited the mating chance of the contiguous cross-compatible and flowering-synchronized transgenic pollen source. This mating superiority could be explained by a much higher pollen competition capacity of the non-GM genotypes, as was confirmed through mixed-hand pollinations. Conclusions/Significance: Pollen competition strongly contributed to transgene confinement. Based on this finding, suitable isolation measures are proposed for the first time to prevent transgene outflow between contiguous plantings of citrus types that may be extendible to other entomophilous transgenic fruit tree species. (Résumé d'auteur
The fate of received sperm in the reproductive tract of a hermaphroditic snail and its implications for fertilisation.
Multiple mating, sperm storage and internal fertilisation enhance sperm competition. The great pond snail can use stored sperm for over three months, and frequently mates with different partners. This hermaphrodite, Lymnaea stagnalis, can also self-fertilise and often produces egg masses containing both selfed and outcrossed eggs. Hence, a sperm recipient may exert considerable control over paternity. Using microsatellite markers, we show that when allosperm are present, all genotyped eggs are cross-fertilised. We also find that sperm have the opportunity to compete, because double matings lead on average to equal paternity for each sperm donor. This indicates that received sperm are randomly mixed in storage. To gain further insight into the mechanisms underlying the process of sperm storage, digestion and utilisation, we investigated the fate of donated sperm at different times after copulation. We find that within 3 h after transfer most sperm have been transported into the sperm-digesting organ. Fluorescent labelling of sperm in histological sections further reveals that allosperm are not stored in the fertilisation pouch, but upstream in either the hermaphroditic duct, seminal vesicles, or ovotestis. Besides contributing to the understanding of the mechanisms underlying sperm competition and/or cryptic sperm choice, this study shows that mixed mating cannot be treated as a separate issue in hermaphroditic animals. © Springer Science+Business Media B.V. 2008
Estimation of mating system parameters in an evolving gynodioecous population of cultivated sunflower (Helianthus annuus L.).
Cultivated plants have been molded by human-induced selection, including manipulations of the mating system in the twentieth century. How these manipulations have affected realized parameters of the mating system in freely evolving cultivated populations is of interest for optimizing the management of breeding populations, predicting the fate of escaped populations and providing material for experimental evolution studies. To produce modern varieties of sunflower (Helianthus annuus L.), self-incompatibility has been broken, recurrent generations of selfing have been performed and male sterility has been introduced. Populations deriving from hybrid-F1 varieties are gynodioecious because of the segregation of a nuclear restorer of male fertility. Using both phenotypic and genotypic data at 11 microsatellite loci, we analyzed the consanguinity status of plants of the first three generations of such a population and estimated parameters related to the mating system. We showed that the resource reallocation to seed in male-sterile individuals was not significant, that inbreeding depression on seed production averaged 15-20% and that cultivated sunflower had acquired a mixed-mating system, with ∼50% of selfing among the hermaphrodites. According to theoretical models, the female advantage and the inbreeding depression at the seed production stage were too low to allow the persistence of male sterility. We discuss our methods of parameter estimation and the potential of such study system in evolutionary biology.L’apparition et le maintient de divergences adaptatives entre populations occupant des niches écologiques différentes dépend de l’importance relative de la sélection et de l’effet homogénéisant des flux de gènes. Chez les plantes à reproduction sexuée, les flux de gènes entres groupes d’individus géographiquement proches, peuvent être réduit du fait de divergences phénologiques (i.e., date du pic de floraison, étendue et intensité de la période de floraison...) favorisant les croisements entre individus à floraison synchrone (« temporal assortative mating», Fox 2003). En dépit de son impact sur l’évolution et l’adaptation des populations l’effet des divergences phénologiques sur les flux de gènes a rarement quantifi