55 research outputs found

    Contribution of thirdhand smoke to overall tobacco smoke exposure in pediatric patients: study protocol.

    Get PDF
    BackgroundThirdhand smoke (THS) is the persistent residue resulting from secondhand smoke (SHS) that accumulates in dust, objects, and on surfaces in homes where tobacco has been used, and is reemitted into air. Very little is known about the extent to which THS contributes to children's overall tobacco smoke exposure (OTS) levels, defined as their combined THS and SHS exposure. Even less is known about the effect of OTS and THS on children's health. This project will examine how different home smoking behaviors contribute to THS and OTS and if levels of THS are associated with respiratory illnesses in nonsmoking children.MethodsThis project leverages the experimental design from an ongoing pediatric emergency department-based tobacco cessation trial of caregivers who smoke and their children (NIHR01HD083354). At baseline and follow-up, we will collect urine and handwipe samples from children and samples of dust and air from the homes of smokers who smoke indoors, have smoking bans or who have quit smoking. These samples will be analyzed to examine to what extent THS pollution at home contributes to OTS exposure over and above SHS and to what extent THS continues to persist and contribute to OTS in homes of smokers who have quit or have smoking bans. Targeted and nontargeted chemical analyses of home dust samples will explore which types of THS pollutants are present in homes. Electronic medical record review will examine if THS and OTS levels are associated with child respiratory illness. Additionally, a repository of child and environmental samples will be created.DiscussionThe results of this study will be crucial to help close gaps in our understanding of the types, quantity, and clinical effects of OTS, THS exposure, and THS pollutants in a unique sample of tobacco smoke-exposed ill children and their homes. The potential impact of these findings is substantial, as currently the level of risk in OTS attributable to THS is unknown. This research has the potential to change how we protect children from OTS, by recognizing that SHS and THS exposure needs to be addressed separately and jointly as sources of pollution and exposure.Trial registrationClinicalTrials.gov Identifier: NCT02531594 . Date of registration: August 24, 2015

    Fully spray-coated triple-cation perovskite solar cells

    Get PDF
    We use ultrasonic spray-coating to sequentially deposit thin films of tin oxide, a triple-cation perovskite and spiro-OMeTAD, allowing us fabricate perovskite solar cells (PSCs) with a champion reverse scan power conversion efficiency (PCE) of 19.4% on small-area substrates. We show that the use of spray-deposition permits us to rapidly (>80 mm s−1) coat 25 mm × 75 mm substrates that were divided into a series of devices each with an active area of 15.4 mm2, yielding an average PCE of 10.3% and a peak PCE of 16.3%. By connecting seven 15.4 mm2 devices in parallel on a single substrate, we create a device having an effective active area of 1.08 cm2 and a PCE of 12.7%. This work demonstrates the possibility for spray-coating to fabricate high efficiency and low-cost perovskite solar cells at speed

    Prevalence and Income-Related Disparities in Thirdhand Smoke Exposure to Children.

    No full text
    This cross-sectional study examines the prevalence of and income-related disparities associated with exposure to thirdhand smoke among children

    Differential associations of hand nicotine and urinary cotinine with children's exposure to tobacco smoke and clinical outcomes.

    No full text
    BackgroundChildren's overall tobacco smoke exposure (TSE) consists of both inhalation of secondhand smoke (SHS) and ingestion, dermal uptake, and inhalation of thirdhand smoke (THS) residue from dust and surfaces in their environments.ObjectivesOur objective was to compare the different roles of urinary cotinine as a biomarker of recent overall TSE and hand nicotine as a marker of children's contact with nicotine pollution in their environments. We explored the differential associations of these markers with sociodemographics, parental smoking, child TSE, and clinical diagnoses.MethodsData were collected from 276 pediatric emergency department patients (Median age = 4.0 years) who lived with a cigarette smoker. Children's hand nicotine and urinary cotinine levels were determined using LC-MS/MS. Parents reported tobacco use and child TSE. Medical records were reviewed to assess discharge diagnoses.ResultsAll children had detectable hand nicotine (GeoM = 89.7ng/wipe; 95 % CI = [78.9; 102.0]) and detectable urinary cotinine (GeoM = 10.4 ng/ml; 95%CI = [8.5; 12.6]). Although hand nicotine and urinary cotinine were highly correlated (r = 0.62, p < 0.001), urinary cotinine geometric means differed between racial groups and were higher for children with lower family income (p < 0.05), unlike hand nicotine. Independent of urinary cotinine, age, race, and ethnicity, children with higher hand nicotine levels were at increased risk to have discharge diagnoses of viral/other infectious illness (aOR = 7.49; 95%CI = [2.06; 27.24], p = 0.002), pulmonary illness (aOR = 6.56; 95%CI = [1.76; 24.43], p = 0.005), and bacterial infection (aOR = 5.45; 95%CI = [1.50; 19.85], p = 0.03). In contrast, urinary cotinine levels showed no associations with diagnosis independent of child hand nicotine levels and demographics.DiscussionThe distinct associations of hand nicotine and urinary cotinine suggest the two markers reflect different exposure profiles that contribute differentially to pediatric illness. Because THS in a child's environment directly contributes to hand nicotine, additional studies of children of smokers and nonsmokers are warranted to determine the role of hand nicotine as a marker of THS exposure and its potential role in the development of tobacco-related pediatric illnesses
    corecore