159 research outputs found
Single-dose liposomal amphotericin B (AmBisome®) for the treatment of Visceral Leishmaniasis in East Africa: study protocol for a randomized controlled trial
BACKGROUND: AmBisome® is an efficacious, safe anti-leishmanial treatment. There is growing interest in its use, either as a single dose or in combination treatments. In East Africa, the minimum optimal single-dosage has not been identified. METHODS/DESIGN: An open-label, 2-arm, non-inferiority, multi-centre randomised controlled trial is being conducted to determine the optimal single-dose treatment with AmBisome®.Patients in the single-dose arm will receive one infusion on day 1, at a dose depending on body weight. For the first group of patients entered to the trial, the dose will be 7.5 mg/kg, but if this dose is found to be ineffective then in subsequent patient series the dose will be escalated progressively to 10, 12.5 and 15 mg/kg. Patients in the reference arm will receive a multi-dose regimen of AmBisome® (3 mg/kg/day on days 1-5, 14 and 21: total dose 21 mg/kg). Patients will be hospitalised for approximately one month after the start of treatment and then followed up at three and six months. The primary endpoint is the status of patients six months after treatment. A secondary endpoint is assessment at day 30. Treatment success is determined as the absence of parasites on microscopy samples taken from bone marrow, lymph node or splenic aspirates. Interim analyses to assess the comparative efficacy of the single dose are planned after recruitment of 20 and 40 patients per arm. The final non-inferiority analysis will include 120 patients per arm, to determine if the single-dose efficacy 6 months after treatment is not more than 10% inferior to the multi-dose. DISCUSSION: An effective, safe single-dose treatment would reduce hospitalization and treatment costs. Results will inform the design of combination treatment studies. TRIAL REGISTRATION: ClinicalTrials.gov NCT00832208
Biofeedback for training balance and mobility tasks in older populations: a systematic review
<p>Abstract</p> <p>Context</p> <p>An effective application of biofeedback for interventions in older adults with balance and mobility disorders may be compromised due to co-morbidity.</p> <p>Objective</p> <p>To evaluate the feasibility and the effectiveness of biofeedback-based training of balance and/or mobility in older adults.</p> <p>Data Sources</p> <p>PubMed (1950-2009), EMBASE (1988-2009), Web of Science (1945-2009), the Cochrane Controlled Trials Register (1960-2009), CINAHL (1982-2009) and PsycINFO (1840-2009). The search strategy was composed of terms referring to biofeedback, balance or mobility, and older adults. Additional studies were identified by scanning reference lists.</p> <p>Study Selection</p> <p>For evaluating effectiveness, 2 reviewers independently screened papers and included controlled studies in older adults (i.e. mean age equal to or greater than 60 years) if they applied biofeedback during repeated practice sessions, and if they used at least one objective outcome measure of a balance or mobility task.</p> <p>Data Extraction</p> <p>Rating of study quality, with use of the Physiotherapy Evidence Database rating scale (PEDro scale), was performed independently by the 2 reviewers. Indications for (non)effectiveness were identified if 2 or more similar studies reported a (non)significant effect for the same type of outcome. Effect sizes were calculated.</p> <p>Results and Conclusions</p> <p>Although most available studies did not systematically evaluate feasibility aspects, reports of high participation rates, low drop-out rates, absence of adverse events and positive training experiences suggest that biofeedback methods can be applied in older adults. Effectiveness was evaluated based on 21 studies, mostly of moderate quality. An indication for effectiveness of visual feedback-based training of balance in (frail) older adults was identified for postural sway, weight-shifting and reaction time in standing, and for the Berg Balance Scale. Indications for added effectiveness of applying biofeedback during training of balance, gait, or sit-to-stand transfers in older patients post-stroke were identified for training-specific aspects. The same applies for auditory feedback-based training of gait in older patients with lower-limb surgery.</p> <p>Implications</p> <p>Further appropriate studies are needed in different populations of older adults to be able to make definitive statements regarding the (long-term) added effectiveness, particularly on measures of functioning.</p
Real-Time Visualization and Quantitation of Vascular Permeability In Vivo: Implications for Drug Delivery
The leaky, heterogeneous vasculature of human tumors prevents the even distribution of systemic drugs within cancer tissues. However, techniques for studying vascular delivery systems in vivo often require complex mammalian models and time-consuming, surgical protocols. The developing chicken embryo is a well-established model for human cancer that is easily accessible for tumor imaging. To assess this model for the in vivo analysis of tumor permeability, human tumors were grown on the chorioallantoic membrane (CAM), a thin vascular membrane which overlays the growing chick embryo. The real-time movement of small fluorescent dextrans through the tumor vasculature and surrounding tissues were used to measure vascular leak within tumor xenografts. Dextran extravasation within tumor sites was selectively enhanced an interleukin-2 (IL-2) peptide fragment or vascular endothelial growth factor (VEGF). VEGF treatment increased vascular leak in the tumor core relative to surrounding normal tissue and increased doxorubicin uptake in human tumor xenografts. This new system easily visualizes vascular permeability changes in vivo and suggests that vascular permeability may be manipulated to improve chemotherapeutic targeting to tumors
GPIIb/IIIa Receptor Antagonism Using Small Molecules Provides no Additive Long-Term Protection after Percutaneous Coronary Intervention as Compared to Clopidogrel Plus Aspirin
Background: There is some controversy as to whether tirofiban or eptifibatide, two small anti-aggregating drugs (AAD), may reduce the incidence of composite ischemic events within one year in patients undergoing percutaneous coronary intervention (PCI) in the real clinical world. Methods: We compared consecutive patients on oral double AAD (with clopidogrel and aspirin) who underwent PCI (n=207) and patients who were on single AAD and received a second AAD, just prior to PCI, and either high-dose tirofiban or double-bolus eptifibatide (double AAD plus small molecules group, n=666). The primary end point (incidence of composite ischemic events within one year) included death, acute myocardial infarction, unstable angina, stent thrombosis or repeat PCI or coronary bypass surgery (related to the target vessel PCI failure) and was modelled by Cox's regression. Results: There were 89 composite ischemic events: 24 (11.6%) in double AAD alone and 65 (9.8%) in double AAD plus small molecules groups (log-rank test: p=0.36). Incidences by type of ischemic events were similar between the 2 groups. Based on 21 potential covariates fitted simultaneously, adjusted hazard ratios (HR and 95% confidence intervals) showed that age (HR 1.03, 1.01-1.06, p=0.01), diabetes (HR 1.68, 1.01-2.79, p=0.05) and intra aortic balloon pump (HR 5.12, 2.36-11.10, p=0.0001) were significant risk factors whereas thrombolysis by tenecteplase (HR 0.35, 0.13-0.98, p=0.05) and having had hypertension or anti-hypertensive treatment (HR 0.58, 0.36-0.93, p=0.03) were significant protectors for events. Whether small molecules were present provided a non significant additional benefit as compared to double AAD alone (HR 0.83, 0.51-1.36, p=0.46). Pre-PCI CK-MB were not useful to predict events (HR 1.01, 0.99-1.01, p=0.17). Conclusions: In clinical world patients undergoing PCI (rescue plus primary <13%) while on double AAD, based on clopidogrel plus aspirin, small molecules (tirofiban or eptifibatide) provided no additive long-term protection against the occurrence of composite ischemic events whereas thrombolysis by tenecteplase did. © Schiariti et al
Concomitant malaria among visceral leishmaniasis in-patients from Gedarif and Sennar States, Sudan: a retrospective case-control study
In areas where visceral leishmaniasis (VL) and malaria are co-endemic, co-infections are common. Clinical implications range from potential diagnostic delay to increased disease-related morbidity, as compared to VL patients. Nevertheless, public awareness of the disease remains limited. In VL-endemic areas with unstable and seasonal malaria, vulnerability to the disease persists through all age-groups, suggesting that in these populations, malaria may easily co-occur with VL, with potentially severe clinical effects
Identification of Herbig Ae/Be Stars in the Small Magellanic Cloud
Protoplanetary disks orbiting intermediate-mass stars, Herbig Ae/Be stars, that have formed in a metal-poor environment may evolve differently than their Galactic cousins. A study of the planet-formation process in such an environment requires identification and characterization of a sample of candidates. We have observed several stars in the Small Magellanic Cloud, a nearby metal-poor dwarf galaxy, that have optical spectral properties of Herbig Ae/Be stars, including strong Hα emission, blue continuum excess, and spectral types ranging from early G to B. Infrared spectra of these sources from the Spitzer Space Telescope show strong excess emission indicating the presence of silicate dust, molecular and atomic gas, and polycyclic aromatic hydrocarbons. We present an analysis of the likelihood that these candidates are Herbig Ae/Be stars. This identification is the necessary first step to future investigations that will examine the role of metallicity in the evolution of protoplanetary disks
Micronutrient malnutrition and wasting in adults with pulmonary tuberculosis with and without HIV co-infection in Malawi
BACKGROUND: Wasting and micronutrient malnutrition have not been well characterized in adults with pulmonary tuberculosis. We hypothesized that micronutrient malnutrition is associated with wasting and higher plasma human immunodeficiency virus (HIV) load in adults with pulmonary tuberculosis. METHODS: In a cross-sectional study involving 579 HIV-positive and 222 HIV-negative adults with pulmonary tuberculosis in Zomba, Malawi, anthropometry, plasma HIV load and plasma micronutrient concentrations (retinol, α-tocopherol, carotenoids, zinc, and selenium) were measured. The risk of micronutrient deficiencies was examined at different severity levels of wasting. RESULTS: Body mass index (BMI), plasma retinol, carotenoid and selenium concentrations significantly decreased by increasing tertile of plasma HIV load. There were no significant differences in plasma micronutrient concentrations between HIV-negative individuals and HIV-positive individuals who were in the lowest tertile of plasma HIV load. Plasma vitamin A concentrations <0.70 μmol/L occurred in 61%, and zinc and selenium deficiency occurred in 85% and 87% respectively. Wasting, defined as BMI<18.5 was present in 59% of study participants and was independently associated with a higher risk of low carotenoids, and vitamin A and selenium deficiency. Severe wasting, defined as BMI<16.0 showed the strongest associations with deficiencies in vitamin A, selenium and plasma carotenoids. CONCLUSIONS: These data demonstrate that wasting and higher HIV load in pulmonary tuberculosis are associated with micronutrient malnutrition
Imaging the Impact of Chemically Inducible Proteins on Cellular Dynamics In Vivo
The analysis of dynamic events in the tumor microenvironment during cancer progression is limited by the complexity of current in vivo imaging models. This is coupled with an inability to rapidly modulate and visualize protein activity in real time and to understand the consequence of these perturbations in vivo. We developed an intravital imaging approach that allows the rapid induction and subsequent depletion of target protein levels within human cancer xenografts while assessing the impact on cell behavior and morphology in real time. A conditionally stabilized fluorescent E-cadherin chimera was expressed in metastatic breast cancer cells, and the impact of E-cadherin induction and depletion was visualized using real-time confocal microscopy in a xenograft avian embryo model. We demonstrate the assessment of protein localization, cell morphology and migration in cells undergoing epithelial-mesenchymal and mesenchymal-epithelial transitions in breast tumors. This technique allows for precise control over protein activity in vivo while permitting the temporal analysis of dynamic biophysical parameters
- …