20 research outputs found

    Early Stage Biomineralization in the Periostracum of the ‘Living Fossil’ Bivalve Neotrigonia

    Get PDF
    A detailed investigation of the shell formation of the palaeoheterodont ‘living fossil’ Neotrigonia concentrated on the timing and manufacture of the calcified ‘bosses’ which stud the outside of all trigonioid bivalves (extant and fossil) has been conducted. Electron microscopy and optical microscopy revealed that Neotrigonia spp. have a spiral-shaped periostracal groove. The periostracum itself is secreted by the basal cell, as a thin dark pellicle, becoming progressively transformed into a thin dark layer by additions of secretions from the internal outer mantle fold. Later, intense secretion of the internal surface of the outer mantle fold forms a translucent layer, which becomes transformed by tanning into a dark layer. The initiation of calcified bosses occurred at a very early stage of periostracum formation, deep within the periostracal groove immediately below the initialmost dark layer. At this stage, they consist of a series of polycyclically twinned crystals. The bosses grow as the periostracum traverse through the periostracal groove, in coordination with the thickening of the dark periostracal layer and until, upon reaching the mantle edge, they impinge upon each other and become transformed into large prisms separated by dark periostracal walls. In conclusion, the initial bosses and the external part of the prismatic layer are fully intraperiostracal. With later growth, the prisms transform into fibrous aggregates, although the details of the process are unknown. This reinforces the relationships with other groups that have the ability to form intraperiostracal calcifications, for example the unionoids with which the trigonioids form the clade Paleoheterodonta. The presence of similar structures in anomalodesmatans and other euheterodonts raises the question of whether this indicates a relationship or represents a convergence. The identification of very early calcification within an organic sheet has interesting implications for our understanding of how shells may have evolved.Coordinated Research Projects CGL2010-20748-C02-01 (AGC, EMH) and 02 (CS) (DGI, Spanish MICINN); the Research Group RNM363 (Consejería de Economía, Investigación, Ciencia y Empleo, Junta de Andalucía); and the FP7 COST Action TD0903 of the European Community

    The Complete Mitochondrial Genomes of Six Heterodont Bivalves (Tellinoidea and Solenoidea): Variable Gene Arrangements and Phylogenetic Implications

    Get PDF
    BACKGROUND: Taxonomy and phylogeny of subclass Heterodonta including Tellinoidea are long-debated issues and a complete agreement has not been reached yet. Mitochondrial (mt) genomes have been proved to be a powerful tool in resolving phylogenetic relationship. However, to date, only ten complete mitochondrial genomes of Heterodonta, which is by far the most diverse major group of Bivalvia, have been determined. In this paper, we newly sequenced the complete mt genomes of six species belonging to Heterodonta in order to resolve some problematical relationships among this subclass. PRINCIPAL FINDINGS: The complete mt genomes of six species vary in size from 16,352 bp to 18,182. Hairpin-like secondary structures are found in the largest non-coding regions of six freshly sequenced mt genomes, five of which contain tandem repeats. It is noteworthy that two species belonging to the same genus show different gene arrangements with three translocations. The phylogenetic analysis of Heterodonta indicates that Sinonovacula constricta, distant from the Solecurtidae belonging to Tellinoidea, is as a sister group with Solen grandis of family Solenidae. Besides, all five species of Tellinoidea cluster together, while Sanguinolaria diphos has closer relationship with Solecurtus divaricatus, Moerella iridescens and Semele scaba rather than with Sanguinolaria olivacea. CONCLUSIONS/SIGNIFICANCE: By comparative study of gene order rearrangements and phylogenetic relationships of the five species belonging to Tellinoidea, our results support that comparisons of mt gene order rearrangements, to some extent, are a useful tool for phylogenetic studies. Based on phylogenetic analyses of multiple protein-coding genes, we prefer classifying the genus Sinonovacula within the superfamily Solenoidea and not the superfamily Tellinoidea. Besides, both gene order and sequence data agree that Sanguinolaria (Psammobiidae) is not monophyletic. Nevertheless, more studies based on more mt genomes via combination of gene order and phylogenetic analysis are needed to further understand the phylogenetic relationships in subclass Heterodonta

    Convergent and parallel evolution in life habit of the scallops (Bivalvia: Pectinidae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We employed a phylogenetic framework to identify patterns of life habit evolution in the marine bivalve family Pectinidae. Specifically, we examined the number of independent origins of each life habit and distinguished between convergent and parallel trajectories of life habit evolution using ancestral state estimation. We also investigated whether ancestral character states influence the frequency or type of evolutionary trajectories.</p> <p>Results</p> <p>We determined that temporary attachment to substrata by byssal threads is the most likely ancestral condition for the Pectinidae, with subsequent transitions to the five remaining habit types. Nearly all transitions between life habit classes were repeated in our phylogeny and the majority of these transitions were the result of parallel evolution from byssate ancestors. Convergent evolution also occurred within the Pectinidae and produced two additional gliding clades and two recessing lineages. Furthermore, our analysis indicates that byssal attaching gave rise to significantly more of the transitions than any other life habit and that the cementing and nestling classes are only represented as evolutionary outcomes in our phylogeny, never as progenitor states.</p> <p>Conclusions</p> <p>Collectively, our results illustrate that both convergence and parallelism generated repeated life habit states in the scallops. Bias in the types of habit transitions observed may indicate constraints due to physical or ontogenetic limitations of particular phenotypes.</p
    corecore