25 research outputs found

    Sprouty2 mediated tuning of signalling is essential for somite myogenesis

    Get PDF
    Background: Negative regulators of signal transduction cascades play critical roles in controlling different aspects of normal embryonic development. Sprouty2 (Spry2) negatively regulates receptor tyrosine kinases (RTK) and FGF signalling and is important in differentiation, cell migration and proliferation. In vertebrate embryos, Spry2 is expressed in paraxial mesoderm and in forming somites. Expression is maintained in the myotome until late stages of somite differentiation. However, its role and mode of action during somite myogenesis is still unclear. Results: Here, we analysed chick Spry2 expression and showed that it overlaps with that of myogenic regulatory factors MyoD and Mgn. Targeted mis-expression of Spry2 led to inhibition of myogenesis, whilst its C-terminal domain led to an increased number of myogenic cells by stimulating cell proliferation. Conclusions: Spry2 is expressed in somite myotomes and its expression overlaps with myogenic regulatory factors. Overexpression and dominant-negative interference showed that Spry2 plays a crucial role in regulating chick myogenesis by fine tuning of FGF signaling through a negative feedback loop. We also propose that mir-23, mir-27 and mir-128 could be part of the negative feedback loop mechanism. Our analysis is the first to shed some light on in vivo Spry2 function during chick somite myogenesis

    FGF Signaling Pathway in the Developing Chick Lung: Expression and Inhibition Studies

    Get PDF
    Background: Fibroblast growth factors (FGF) are essential key players during embryonic development. Through their specific cognate receptors (FGFR) they activate intracellular cascades, finely regulated by modulators such as Sprouty. Several FGF ligands (FGF1, 2, 7, 9, 10 and 18) signaling through the four known FGFRs, have been implicated in lung morphogenesis. Although much is known about mammalian lung, so far, the avian model has not been explored for lung studies. Methodology/Principal Findings: In this study we provide the first description of fgf10, fgfr1-4 and spry2 expression patterns in early stages of chick lung development by in situ hybridization and observe that they are expressed similarly to their mammalian counterparts. Furthermore, aiming to determine a role for FGF signaling in chick lung development, in vitro FGFR inhibition studies were performed. Lung explants treated with an FGF receptor antagonist (SU5402) presented an impairment of secondary branch formation after 48 h of culture; moreover, abnormal lung growth with a cystic appearance of secondary bronchi and reduction of the mesenchymal tissue was observed. Branching and morphometric analysis of lung explants confirmed that FGFR inhibition impaired branching morphogenesis and induced a significant reduction of the mesenchyme. Conclusions/Significance: This work demonstrates that FGFRs are essential for the epithelial-mesenchymal interactions tha

    Sprouty2 and Spred1-2 Proteins Inhibit the Activation of the ERK Pathway Elicited by Cyclopentenone Prostanoids

    Get PDF
    Sprouty and Spred proteins have been widely implicated in the negative regulation of the fibroblast growth factor receptor-extracellular regulated kinase (ERK) pathway. In considering the functional role of these proteins, we explored their effects on ERK activation induced by cyclopentenone prostanoids, which bind to and activate Ras proteins. We therefore found that ectopic overexpression in HeLa cells of human Sprouty2, or human Spred1 or 2, inhibits ERK1/2 and Elk-1 activation triggered by the cyclopentenone prostanoids PGA1 and 15d-PGJ2. Furthermore, we found that in HT cells that do not express Sprouty2 due to hypermethylation of its gene-promoter, PGA1-provoked ERK activation was more intense and sustained compared to other hematopoietic cell lines with unaltered Sprouty2 expression. Cyclopentenone prostanoids did not induce Sprouty2 tyrosine phosphorylation, in agreement with its incapability to activate tyrosine-kinase receptors. However, Sprouty2 Y55F, which acts as a defective mutant upon tyrosine-kinase receptor stimulation, did not inhibit cyclopentenone prostanoids-elicited ERK pathway activation. In addition, Sprouty2 did not affect the Ras-GTP levels promoted by cyclopentenone prostanoids. These results unveil both common and differential features in the activation of Ras-dependent pathways by cyclopentenone prostanoids and growth factors. Moreover, they provide the first evidence that Sprouty and Spred proteins are negative regulators of the ERK/Elk-1 pathway activation induced not only by growth-factors, but also by reactive lipidic mediators

    Sprouty2 expression controls endothelial monolayer integrity and quiescence

    Full text link
    Vascular integrity is fundamental to the formation of mature blood vessels and depends on a functional, quiescent endothelial monolayer. However, how endothelial cells enter and maintain quiescence in the presence of angiogenic factors is still poorly understood. Here we identify the fibroblast growth factor (FGF) antagonist Sprouty2 (Spry2) as a key player in mediating endothelial quiescence and barrier integrity in mouse aortic endothelial cells (MAECs): Spry2 knockout MAECs show spindle-like shapes and are incapable of forming a functional, impermeable endothelial monolayer in the presence of FGF2. Whereas dense wild type cells exhibit contact inhibition and stop to proliferate, Spry2 knockout MAECs remain responsive to FGF2 and continue to proliferate even at high cell densities. Importantly, the anti-proliferative effect of Spry2 is absent in sparsely plated cells. This cell density-dependent Spry2 function correlates with highly increased Spry2 expression in confluent wild type MAECs. Spry2 protein expression is barely detectable in single cells but steadily increases in cells growing to high cell densities, with hypoxia being one contributing factor. At confluence, Spry2 expression correlates with intact cell-cell contacts, whereas disruption of cell-cell contacts by EGTA, TNFα and thrombin decreases Spry2 protein expression. In confluent cells, high Spry2 levels correlate with decreased extracellular signal-regulated kinase 1/2 (Erk1/2) phosphorylation. In contrast, dense Spry2 knockout MAECs exhibit enhanced signaling by Erk1/2. Moreover, inhibiting Erk1/2 activity in Spry2 knockout cells restores wild type cobblestone monolayer morphology. This study thus reveals a novel Spry2 function, which mediates endothelial contact inhibition and barrier integrity
    corecore