19 research outputs found

    Molecular and biochemical characterisation of a novel mutation in POLG associated with Alpers syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA polymerase Îł (<it>POLG</it>) is the only known mitochondrial DNA (mtDNA) polymerase. It mediates mtDNA replication and base excision repair. Mutations in the <it>POLG </it>gene lead to reduction of functional mtDNA (mtDNA depletion and/or deletions) and are therefore predicted to result in defective oxidative phosphorylation (OXPHOS). Many mutations map to the polymerase and exonuclease domains of the enzyme and produce a broad clinical spectrum. The most frequent mutation p.A467T is localised in the linker region between these domains. In compound heterozygote patients the p.A467T mutation has been described to be associated amongst others with fatal childhood encephalopathy. These patients have a poorer survival rate compared to homozygotes.</p> <p>Methods</p> <p>mtDNA content in various tissues (fibroblasts, muscle and liver) was quantified using quantitative PCR (qPCR). OXPHOS activities in the same tissues were assessed using spectrophotometric methods and catalytic stain of BN-PAGE.</p> <p>Results</p> <p>We characterise a novel splice site mutation in <it>POLG </it>found <it>in trans </it>with the p.A467T mutation in a 3.5 years old boy with valproic acid induced acute liver failure (Alpers-Huttenlocher syndrome). These mutations result in a tissue specific depletion of the mtDNA which correlates with the OXPHOS-activities.</p> <p>Conclusions</p> <p>mtDNA depletion can be expressed in a high tissue-specific manner and confirms the need to analyse primary tissue. Furthermore<it>, POLG </it>analysis optimises clinical management in the early stages of disease and reinforces the need for its evaluation before starting valproic acid treatment.</p

    Purine Nucleoside Phosphorylase: Allosteric Regulation of a Dissociating Enzyme

    No full text

    A radiation-controlled molecular switch for use in gene therapy of cancer

    No full text
    Ionising radiation induces the expression of a number of radiation-responsive genes and there is current interest in exploiting this to regulate the expression of exogenous therapeutic genes in gene therapy strategies for cancer. However, the radiation-responsive promoters used in these approaches are often associated with low and transient levels of therapeutic gene expression. We describe here a novel radiation-triggered molecular switching device based on promoter elements from the radiation-responsive Egr-1 gene and the cre-LoxP site-specific recombination system of the P1 bacteriophage. Using this system, a single, minimally toxic dose of radiation induced cre-mediated excision of a lox-P flanked stop cassette in a silenced expression vector and this resulted in amplified levels of CMV-promoter-driven expression of the exogenous tumour-sensitising gene, HSV-tk. This strategy could be used in combination with targeted delivery and tumour-specific promoters to elicit the tumour-targeted and prolonged expression of a variety of tumour-sensitising genes and provide an unprecedented level of control and tumour selectivity

    A cytochrome P450 class I electron transfer system from Novosphingobium aromaticivorans

    No full text
    Cytochrome P450 (CYP) enzymes of the CYP101 and CYP111 families from Novosphingobium aromaticivorans are heme monooxygenases that catalyze the hydroxylation of a range of terpenoid compounds. CYP101D1 and CYP101D2 oxidized camphor to 5-exo-hydroxycamphor. CYP101B1 and CYP101C1 oxidized beta-ionone to predominantly 3-R-hydroxy-beta-ionone and 4-hydroxy-beta-ionone, respectively. CYP111A2 oxidized linalool to 8-hydroxylinalool. Physiologically, these CYP enzymes could receive electrons from Arx, a [2Fe-2S] ferredoxin equivalent to putidaredoxin from the CYP101A1 system from Pseudomonas putida. A putative ferredoxin reductase (ArR) in the N. aromaticivorans genome, with high amino acid sequence homology to putidaredoxin reductase, has been over-produced in Escherichia coli and found to support substrate oxidation by these CYP enzymes via Arx with both high activity and coupling of product formation to NADH consumption. The ArR/Arx electron-transport chain has been co-expressed with the CYP enzymes in an E. coli host to provide in vivo whole-cell substrate oxidation systems that could produce up to 6.0 g L(-1) of 5-exo-hydroxycamphor at rates of up to 64 microM (gram of cell dry weight)(-1) min(-1). These efficient biocatalytic systems have potential uses in preparative scale whole-cell biotransformations.Stephen G. Bell, Alison Dale, Nicholas H. Rees, Luet-Lok Won
    corecore