94 research outputs found
Observation of interstellar lithium in the low-metallicity Small Magellanic Cloud
The primordial abundances of light elements produced in the standard theory
of Big Bang nucleosynthesis (BBN) depend only on the cosmic ratio of baryons to
photons, a quantity inferred from observations of the microwave background. The
predicted primordial 7Li abundance is four times that measured in the
atmospheres of Galactic halo stars. This discrepancy could be caused by
modification of surface lithium abundances during the stars' lifetimes or by
physics beyond the Standard Model that affects early nucleosynthesis. The
lithium abundance of low-metallicity gas provides an alternative constraint on
the primordial abundance and cosmic evolution of lithium that is not
susceptible to the in situ modifications that may affect stellar atmospheres.
Here we report observations of interstellar 7Li in the low-metallicity gas of
the Small Magellanic Cloud, a nearby galaxy with a quarter the Sun's
metallicity. The present-day 7Li abundance of the Small Magellanic Cloud is
nearly equal to the BBN predictions, severely constraining the amount of
possible subsequent enrichment of the gas by stellar and cosmic-ray
nucleosynthesis. Our measurements can be reconciled with standard BBN with an
extremely fine-tuned depletion of stellar Li with metallicity. They are also
consistent with non-standard BBN.Comment: Published in Nature. Includes main text and Supplementary
Information. Replaced with final title and abstrac
Interstellar Dust Close to the Sun
The low density interstellar medium (ISM) close to the Sun and inside of the
heliosphere provides a unique laboratory for studying interstellar dust grains.
Grain characteristics in the nearby ISM are obtained from observations of
interstellar gas and dust inside of the heliosphere and the interstellar gas
towards nearby stars. Comparison between the gas composition and solar
abundances suggests that grains are dominated by olivines and possibly some
form of iron oxide. Measurements of the interstellar Ne/O ratio by the
Interstellar Boundary Explorer spacecraft indicate that a high fraction of
interstellar oxygen in the ISM must be depleted onto dust grains. Local
interstellar abundances are consistent with grain destruction in ~150 km/s
interstellar shocks, provided that the carbonaceous component is hydrogenated
amorphous carbon and carbon abundances are correct. Variations in relative
abundances of refractories in gas suggest variations in the history of grain
destruction in nearby ISM. The large observed grains, > 1 micron, may indicate
a nearby reservoir of denser ISM. Theoretical three-dimensional models of the
interaction between interstellar dust grains and the solar wind predict that
plumes of about 0.18 micron dust grains form around the heliosphere.Comment: 2011 AGOS Taiwan meeting; accepted for publication in Earth, Planets
and Spac
The microwave background temperature at the redshift of 2.33771
The Cosmic Microwave Background radiation is a fundamental prediction of Hot
Big Bang cosmology. The temperature of its black-body spectrum has been
measured at the present time, = 2.726 0.010 K, and is
predicted to have been higher in the past. At earlier time, the temperature can
be measured, in principle, using the excitation of atomic fine structure levels
by the radiation field. All previous measurements however give only upper
limits as they assume that no other significant source of excitation is
present. Here we report the detection of absorption from the first {\sl and}
second fine-structure levels of neutral carbon atoms in an isolated remote
cloud at a redshift of 2.33771. In addition, the unusual detection of molecular
hydrogen in several rotational levels and the presence of ionized carbon in its
excited fine structure level make the absorption system unique to constrain,
directly from observation, the different excitation processes at play. It is
shown for the first time that the cosmic radiation was warmer in the past. We
find 6.0 < T_{\rm CMBR} < 14 K at z = 2.33771 when 9.1 K is expected in the Hot
Big Bang cosmology.Comment: 20 pages, 5 figures, accepted for publication in Nature, Press
embargo until 1900 hrs London time (GMT) on 20 Dec 200
TGFβR signalling determines CD103<sup>+</sup>CD11b<sup>+</sup> dendritic cell development in the intestine
CD103+CD11b+ dendritic cells (DCs) are unique to the intestine, but the factors governing their differentiation are unclear. Here we show that transforming growth factor receptor 1 (TGFβR1) has an indispensable, cell intrinsic role in the development of these cells. Deletion of Tgfbr1 results in markedly fewer intestinal CD103+CD11b+ DCs and a reciprocal increase in the CD103−CD11b+ dendritic cell subset. Transcriptional profiling identifies markers that define the CD103+CD11b+ DC lineage, including CD101, TREM1 and Siglec-F, and shows that the absence of CD103+CD11b+ DCs in CD11c-Cre.Tgfbr1fl/fl mice reflects defective differentiation from CD103−CD11b+ intermediaries, rather than an isolated loss of CD103 expression. The defect in CD103+CD11b+ DCs is accompanied by reduced generation of antigen-specific, inducible FoxP3+ regulatory T cells in vitro and in vivo, and by reduced numbers of endogenous Th17 cells in the intestinal mucosa. Thus, TGFβR1-mediated signalling may explain the tissue-specific development of these unique DCs
Increased searching and handling effort in tall swards lead to a Type IV functional response in small grazing herbivores
Understanding the functional response of species is important in comprehending the species’ population dynamics and the functioning of multi-species assemblages. A Type II functional response, where instantaneous intake rate increases asymptotically with sward biomass, is thought to be common in grazers. However, at tall, dense swards, food intake might decline due to mechanical limitations or if animals selectively forage on the most nutritious parts of a sward, leading to a Type IV functional response, especially for smaller herbivores. We tested the predictions that bite mass, cropping time, swallowing time and searching time increase, and bite rate decreases with increasing grass biomass for different-sized Canada geese (Branta canadensis) foraging on grass swards. Bite mass indeed showed an increasing asymptotic relationship with grass biomass. At high biomass, difficulties in handling long leaves and in locating bites were responsible for increasing cropping, swallowing, and searching times. Constant bite mass and decreasing bite rate caused the intake rate to decrease at high sward biomass after reaching an optimum, leading to a Type IV functional response. Grazer body mass affected maximum bite mass and intake rate, but did not change the shape of the functional response. As grass nutrient contents are usually highest in short swards, this Type IV functional response in geese leads to an intake rate that is maximised in these swards. The lower grass biomass at which intake rate was maximised allows resource partitioning between different-sized grazers. We argue that this Type IV functional response is of more importance than previously thought
Osteological and Soft-Tissue Evidence for Pneumatization in the Cervical Column of the Ostrich (Struthio camelus) and Observations on the Vertebral Columns of Non-Volant, Semi-Volant and Semi-Aquatic Birds
© 2015 Apostolaki et al. This is an open access article distributed under the terms of the Creative Commons Attribution License [4.0], which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article
MRI in active surveillance: a critical review
INTRODUCTION: Recent technological advancements and the introduction of modern anatomical and functional sequences have led to a growing role for multiparametric magnetic resonance imaging (mpMRI) in the detection, risk assessment and monitoring of early prostate cancer. This includes men who have been diagnosed with lower-risk prostate cancer and are looking at the option of active surveillance (AS). The purpose of this paper is to review the recent evidence supporting the use of mpMRI at different time points in AS, as well as to discuss some of its potential pitfalls. METHODS: A combination of electronic and manual searching methods were used to identify recent, important papers investigating the role of mpMRI in AS. RESULTS: The high negative predictive value of mpMRI can be exploited for the selection of AS candidates. In addition, mpMRI can be efficiently used to detect higher risk disease in patients already on surveillance. CONCLUSION: Although there is an ongoing debate regarding the precise nature of its optimal implementation, mpMRI is a promising risk stratification tool and should be considered for men on AS
Vertebral Pneumaticity in the Ornithomimosaur Archaeornithomimus (Dinosauria: Theropoda) Revealed by Computed Tomography Imaging and Reappraisal of Axial Pneumaticity in Ornithomimosauria
Among extant vertebrates, pneumatization of postcranial bones is unique to birds, with few known exceptions in other groups. Through reduction in bone mass, this feature is thought to benefit flight capacity in modern birds, but its prevalence in non-avian dinosaurs of variable sizes has generated competing hypotheses on the initial adaptive significance of postcranial pneumaticity. To better understand the evolutionary history of postcranial pneumaticity, studies have surveyed its distribution among non-avian dinosaurs. Nevertheless, the degree of pneumaticity in the basal coelurosaurian group Ornithomimosauria remains poorly known, despite their potential to greatly enhance our understanding of the early evolution of pneumatic bones along the lineage leading to birds. Historically, the identification of postcranial pneumaticity in non-avian dinosaurs has been based on examination of external morphology, and few studies thus far have focused on the internal architecture of pneumatic structures inside the bones. Here, we describe the vertebral pneumaticity of the ornithomimosaur Archaeornithomimus with the aid of X-ray computed tomography (CT) imaging. Complementary examination of external and internal osteology reveals (1) highly pneumatized cervical vertebrae with an elaborate configuration of interconnected chambers within the neural arch and the centrum; (2) anterior dorsal vertebrae with pneumatic chambers inside the neural arch; (3) apneumatic sacral vertebrae; and (4) a subset of proximal caudal vertebrae with limited pneumatic invasion into the neural arch. Comparisons with other theropod dinosaurs suggest that ornithomimosaurs primitively exhibited a plesiomorphic theropod condition for axial pneumaticity that was extended among later taxa, such as Archaeornithomimus and large bodied Deinocheirus. This finding corroborates the notion that evolutionary increases in vertebral pneumaticity occurred in parallel among independent lineages of bird-line archosaurs. Beyond providing a comprehensive view of vertebral pneumaticity in a non-avian coelurosaur, this study demonstrates the utility and need of CT imaging for further clarifying the early evolutionary history of postcranial pneumaticity
- …