114 research outputs found

    Bilateral optic neuritis in a 26-year-old man with common variable immunodeficiency: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Common variable immunodeficiency encompasses a group of heterogeneous conditions linked by a lack of immunoglobulin production and primary antibody failure. Although primary immunodeficiencies are typically characterized by recurrent infections, autoimmune manifestations have increasingly been recognized. Neurological complications are extremely rare and to the best of our knowledge optic neuritis has not been described previously. We report the case of a patient with common variable immunodeficiency who developed loss of vision secondary to bilateral optic neuritis.</p> <p>Case presentation</p> <p>A 26-year-old Caucasian man with a diagnosis of common variable immunodeficiency presented to our facility with loss of vision secondary to bilateral optic neuritis. Results of a thorough study for infectious, neoplastic and autoimmune diseases were negative. Our patient was treated with intravenous methylprednisolone with almost complete improvement and he remained asymptomatic at a 12-month follow-up.</p> <p>Conclusions</p> <p>Bilateral optic neuritis should be added to the list of autoimmune disorders related to common variable immunodeficiency. If a patient with common variable immunodeficiency experiences loss of vision, the possibility of bilateral optic neuritis should be considered as rapid initiation of high-dose corticosteroids may improve visual recovery.</p

    NCAM (CD56) Expression in keratin-producing odontogenic cysts: aberrant expression in KCOT

    Get PDF
    Background: Keratin-producing odontogenic cysts (KPOCs) are a group of cystic lesions that are often aggressive, with high rates of recurrence and multifocality. KPOCs included orthokeratinised odontogenic cyst (OOC) and parakeratotic odontogenic cysts, which are now considered true tumours denominated keratocystic odontogenic tumours (KCOTs). GLUT1 is a protein transporter that is involved in the active uptake of glucose across cell membranes and that is overexpressed in tumours in close correlation with the proliferation rate and positron emission tomography (PET) imaging results. Methods: A series of 58 keratin-producing odontogenic cysts was evaluated histologically and immunohistochemically in terms of GLUT1 expression. Different data were correlated using the beta regression model in relation to histological type and immunohistochemical expression of GLUT1, which was quantified using two different morphological methods. Results: KPOC cases comprised 12 OOCs and 46 KCOTs, the latter corresponding to 6 syndromic and 40 sporadic KCOTs. GLUT1 expression was very low in OOC cases compared with KCOT cases, with statistical significant differences when quantification was considered. Different GLUT1 localisation patterns were revealed by immunostaining, with the parabasal cells showing higher reactivity in KCOTs. However, among KCOTs cases, GLUT1 expression was unable to establish differences between syndromic and sporadic cases. Conclusions: GLUT1 expression differentiated between OOC and KCOT cases, with significantly higher expression in KCOTs, but did not differentiate between syndromic and sporadic KCOT cases. However, given the structural characteristics of KCOTs, we hypothesised that PET imaging methodology is probably not a useful diagnostic tool for KCOTs. Further studies of GLUT1 expression and PET examination in KCOT series are needed to confirm this last hypothesis. Keywords: Glucose transporter protein, Immunohistochemistry, Keratin-producing odontogenic cyst, Keratocystic odontogenic tumour, Orthokeratinised odontogenic cyst, Positron emission tomograph

    High through-put sequencing of the Parhyale hawaiensis mRNAs and microRNAs to aid comparative developmental studies

    Get PDF
    Understanding the genetic and evolutionary basis of animal morphological diversity will require comparative developmental studies that use new model organisms. This necessitates development of tools for the study of genetics and also the generation of sequence information of the organism to be studied. The development of next generation sequencing technology has enabled quick and cost effective generation of sequence information. Parhyale hawaiensis has emerged as a model organism of choice due to the development of advanced molecular tools, thus P. hawaiensis genetic information will help drive functional studies in this organism. Here we present a transcriptome and miRNA collection generated using next generation sequencing platforms. We generated approximately 1.7 million reads from a P. hawaiensis cDNA library constructed from embryos up to the germ band stage. These reads were assembled into a dataset comprising 163,501 transcripts. Using the combined annotation of Annot8r and pfam2go, Gene Ontology classifications was assigned to 20,597 transcripts. Annot8r was used to provide KEGG orthology to our transcript dataset. A total of 25,292 KEGG pathway assignments were defined and further confirmed with reciprocal blast against the NCBI nr protein database. This has identified many P. hawaiensis gene orthologs of key conserved signalling pathways involved in development. We also generated small RNA sequences from P. hawaiensis, identifying 55 conserved miRNAs. Sequenced small RNAs that were not annotated by stringent comparison to mirBase were used to search the Daphnia pulex for possible novel miRNAs. Using a conservative approach, we have identified 51 possible miRNA candidates conserved in the Daphnia pulex genome, which could be potential crustacean/arthropod specific miRNAs. Our study presents gene and miRNA discovery in a new model organism that does not have a sequenced genome. The data provided by our work will be valuable for the P. hawaiensis community as well as the wider evolutionary developmental biology community

    Leucine-Rich Repeat Kinase 2 Modulates Retinoic Acid-Induced Neuronal Differentiation of Murine Embryonic Stem Cells

    Get PDF
    Background: Dominant mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most prevalent cause of Parkinson’s disease, however, little is known about the biological function of LRRK2 protein. LRRK2 is expressed in neural precursor cells suggesting a role in neurodevelopment. Methodology/Principal Findings: In the present study, differential gene expression profiling revealed a faster silencing of pluripotency-associated genes, like Nanog, Oct4, and Lin28, during retinoic acid-induced neuronal differentiation of LRRK2deficient mouse embryonic stem cells compared to wildtype cultures. By contrast, expression of neurotransmitter receptors and neurotransmitter release was increased in LRRK2+/2 cultures indicating that LRRK2 promotes neuronal differentiation. Consistently, the number of neural progenitor cells was higher in the hippocampal dentate gyrus of adult LRRK2-deficient mice. Alterations in phosphorylation of the putative LRRK2 substrates, translation initiation factor 4E binding protein 1 and moesin, do not appear to be involved in altered differentiation, rather there is indirect evidence that a regulatory signaling network comprising retinoic acid receptors, let-7 miRNA and downstream target genes/mRNAs may be affected in LRRK2deficient stem cells in culture. Conclusion/Significance: Parkinson’s disease-linked LRRK2 mutations that associated with enhanced kinase activity may affect retinoic acid receptor signaling during neurodevelopment and/or neuronal maintenance as has been shown in othe

    Be careful with triage in emergency departments: interobserver agreement on 1,578 patients in France

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For several decades, emergency departments (EDs) utilization has increased, inducing ED overcrowding in many countries. This phenomenon is related partly to an excessive number of nonurgent patients. To resolve ED overcrowding and to decrease nonurgent visits, the most common solution has been to triage the ED patients to identify potentially nonurgent patients, i.e. which could have been dealt with by general practitioner. The objective of this study was to measure agreement among ED health professionals on the urgency of an ED visit, and to determine if the level of agreement is consistent among different sub-groups based on following explicit criteria: age, medical status, type of referral to the ED, investigations performed in the ED, and the discharge from the ED.</p> <p>Methods</p> <p>We conducted a multicentric cross-sectional study to compare agreement between nurses and physicians on categorization of ED visits into urgent or nonurgent. Subgroups stratified by criteria characterizing the ED visit were analyzed in relation to the outcome of the visit.</p> <p>Results</p> <p>Of 1,928 ED patients, 350 were excluded because data were lacking. The overall nurse-physician agreement on categorization was moderate (kappa = 0.43). The levels of agreement within all subgroups were variable and low. The highest agreement concerned three subgroups of complaints: cranial injury (kappa = 0.61), gynaecological (kappa = 0.66) and toxicology complaints (kappa = 1.00). The lowest agreement concerned two subgroups: urinary-nephrology (kappa = 0.09) and hospitalization (kappa = 0.20). When categorization of ED visits into urgent or nonurgent cases was compared to hospitalization, ED physicians had higher sensitivity and specificity than nurses (respectively 94.9% versus 89.5%, and 43.1% versus 30.9%).</p> <p>Conclusions</p> <p>The lack of physician-nurse agreement and the inability to predict hospitalization have important implications for patient safety. When urgency screening is used to determine treatment priority, disagreement might not matter because all patients in the ED are seen and treated. But using assessments as the basis for refusal of care to potential nonurgent patients raises legal, ethical, and safety issues. Managed care organizations should be cautious when applying such criteria to restrict access to EDs.</p

    Overexpression of microRNA-206 in the skeletal muscle from myotonic dystrophy type 1 patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs are highly conserved, noncoding RNAs involved in post-transcriptional gene silencing. They have been shown to participate in a wide range of biological processes, including myogenesis and muscle regeneration. The goal of this study is to test the hypothesis that myo-miRs (myo = muscle + miR = miRNA) expression is altered in muscle from patients affected by myotonic dystrophy type 1 (DM1), the most frequently inherited neuromuscular disease in adults. In order to gain better insights about the role of miRNAs in the DM1 pathogenesis, we have also analyzed the muscular expression of miR-103 and miR-107, which have been identified <it>in silico </it>as attractive candidates for binding to the <it>DMPK </it>mRNA.</p> <p>Methods</p> <p>To this aim, we have profiled the expression of miR-133 (miR-133a, miR-133b), miR-1, miR-181 (miR-181a, miR-181b, miR-181c) and miR-206, that are specifically induced during myogenesis in cardiac and skeletal muscle tissues. miR-103 and miR-107, highly expressed in brain, heart and muscle have also been included in this study. QRT-PCR experiments have been performed on RNA from vastus lateralis biopsies of DM1 patients (n = 7) and control subjects (n = 4). Results of miRNAs expression have been confirmed by Northern blot, whereas <it>in situ </it>hybridization technique have been performed to localize misexpressed miRNAs on muscle sections from DM1 and control individuals.</p> <p>Results</p> <p>Only miR-206 showed an over-expression in 5 of 7 DM1 patients (threshold = 2, fold change between 1.20 and 13.22, average = 5.37) compared to the control group. This result has been further confirmed by Northern blot analysis (3.37-fold overexpression, <it>R</it><sup>2 </sup>= 0.89). <it>In situ </it>hybridization localized miR-206 to nuclear site both in normal and DM1 tissues. Cellular distribution in DM1 tissues includes also the nuclear regions of centralized nuclei, with a strong signal corresponding to nuclear clumps.</p> <p>Conclusions</p> <p>This work provides, for the first time, evidences about miRNAs misexpression in DM1 muscle tissues, adding a new element in the pathogenesis of this complex genetic disease.</p

    Identification and Differential Expression of MicroRNAs during Metamorphosis of the Japanese Flounder (Paralichthys olivaceus)

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs of 20-25 nucleotides that play a key role in diverse biological processes. Japanese flounder undergo dramatic metamorphosis in their early development. The metamorphosis is characterized by morphological transformation from a bilaterally symmetrical to an asymmetrical body shape concomitant with extensive morphological and physiological remodeling of organs. So far, only a few miRNAs have been identified in fish and there are very few reports about the Japanese flounder miRNA. METHODOLOGY/PRINCIPAL FINDINGS: Solexa sequencing technology was used to perform high throughput sequencing of the small RNA library from the metamorphic period of Japanese flounder. Subsequently, aligning these sequencing data with metazoan known miRNAs, we characterized 140 conserved miRNAs and 57 miRNA: miRNA* pairs from the small RNA library. Among these 57 miRNA: miRNA* pairs, twenty flounder miRNA precursors were amplified from genomic DNA. We also demonstrated evolutionary conservation of Japanese flounder miRNAs and miRNA* in the animal evolution process. Using miRNA microarrays, we identified 66 differentially expressed miRNAs at two metamorphic stages (17 and 29 days post hatching) of Japanese flounder. The results show that miRNAs might play a key role in regulating gene expression during Japanese flounder metamorphosis. CONCLUSIONS/SIGNIFICANCE: We identified a large number of miRNAs during flounder metamorphosis, some of which are differentially expressed at two different metamorphic stages. The study provides an opportunity for further understanding of miRNA function in the regulation of flounder metamorphosis and gives us clues for further studies of the mechanisms of metamorphosis in Japanese flounder

    The Silkworm (Bombyx mori) microRNAs and Their Expressions in Multiple Developmental Stages

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) play crucial roles in various physiological processes through post-transcriptional regulation of gene expressions and are involved in development, metabolism, and many other important molecular mechanisms and cellular processes. The Bombyx mori genome sequence provides opportunities for a thorough survey for miRNAs as well as comparative analyses with other sequenced insect species. METHODOLOGY/PRINCIPAL FINDINGS: We identified 114 non-redundant conserved miRNAs and 148 novel putative miRNAs from the B. mori genome with an elaborate computational protocol. We also sequenced 6,720 clones from 14 developmental stage-specific small RNA libraries in which we identified 35 unique miRNAs containing 21 conserved miRNAs (including 17 predicted miRNAs) and 14 novel miRNAs (including 11 predicted novel miRNAs). Among the 114 conserved miRNAs, we found six pairs of clusters evolutionarily conserved cross insect lineages. Our observations on length heterogeneity at 5' and/or 3' ends of nine miRNAs between cloned and predicted sequences, and three mature forms deriving from the same arm of putative pre-miRNAs suggest a mechanism by which miRNAs gain new functions. Analyzing development-related miRNAs expression at 14 developmental stages based on clone-sampling and stem-loop RT PCR, we discovered an unusual abundance of 33 sequences representing 12 different miRNAs and sharply fluctuated expression of miRNAs at larva-molting stage. The potential functions of several stage-biased miRNAs were also analyzed in combination with predicted target genes and silkworm's phenotypic traits; our results indicated that miRNAs may play key regulatory roles in specific developmental stages in the silkworm, such as ecdysis. CONCLUSIONS/SIGNIFICANCE: Taking a combined approach, we identified 118 conserved miRNAs and 151 novel miRNA candidates from the B. mori genome sequence. Our expression analyses by sampling miRNAs and real-time PCR over multiple developmental stages allowed us to pinpoint molting stages as hotspots of miRNA expression both in sorts and quantities. Based on the analysis of target genes, we hypothesized that miRNAs regulate development through a particular emphasis on complex stages rather than general regulatory mechanisms

    Brain Expressed microRNAs Implicated in Schizophrenia Etiology

    Get PDF
    BACKGROUND: Protein encoding genes have long been the major targets for research in schizophrenia genetics. However, with the identification of regulatory microRNAs (miRNAs) as important in brain development and function, miRNAs genes have emerged as candidates for schizophrenia-associated genetic factors. Indeed, the growing understanding of the regulatory properties and pleiotropic effects that miRNA have on molecular and cellular mechanisms, suggests that alterations in the interactions between miRNAs and their mRNA targets may contribute to phenotypic variation. METHODOLOGY/PRINCIPAL FINDINGS: We have studied the association between schizophrenia and genetic variants of miRNA genes associated with brain-expression using a case-control study design on three Scandinavian samples. Eighteen known SNPs within or near brain-expressed miRNAs in three samples (Danish, Swedish and Norwegian: 420/163/257 schizophrenia patients and 1006/177/293 control subjects), were analyzed. Subsequently, joint analysis of the three samples was performed on SNPs showing marginal association. Two SNPs rs17578796 and rs1700 in hsa-mir-206 (mir-206) and hsa-mit-198 (mir-198) showed nominal significant allelic association to schizophrenia in the Danish and Norwegian sample respectively (P = 0.0021 & p = 0.038), of which only rs17578796 was significant in the joint sample. In-silico analysis revealed that 8 of the 15 genes predicted to be regulated by both mir-206 and mir-198, are transcriptional targets or interaction partners of the JUN, ATF2 and TAF1 connected in a tight network. JUN and two of the miRNA targets (CCND2 and PTPN1) in the network have previously been associated with schizophrenia. CONCLUSIONS/SIGNIFICANCE: We found nominal association between brain-expressed miRNAs and schizophrenia for rs17578796 and rs1700 located in mir-206 and mir-198 respectively. These two miRNAs have a surprising large number (15) of targets in common, eight of which are also connected by the same transcription factors

    Use of MicroRNA Let-7 to Control the Replication Specificity of Oncolytic Adenovirus in Hepatocellular Carcinoma Cells

    Get PDF
    Highly selective therapy for hepatocellular carcinoma (HCC) remains an unmet medical need. In present study, we found that the tumor suppressor microRNA, let-7 was significantly downregulated in a proportion of primary HCC tissues (12 of 33, 36.4%) and HCC cell lines. In line with this finding, we have engineered a chimeric Ad5/11 fiber oncolytic adenovirus, SG7011let7T, by introducing eight copies of let-7 target sites (let7T) into the 3β€² untranslated region of E1A, a key gene associated with adenoviral replication. The results showed that the E1A expression (both RNA and protein levels) of the SG7011let7T was tightly regulated according to the endogenous expression level of the let-7. As contrasted with the wild-type adenovirus and the control virus, the replication of SG7011let7T was distinctly inhibited in normal liver cells lines (i.e. L-02 and WRL-68) expressing high level of let-7 (>300 folds), whereas was almost not impaired in HCC cells (i.e. Hep3B and PLC/PRF/5) with low level of let-7. Consequently, the cytotoxicity of SG7011let7T to normal liver cells was successfully decreased while was almost not attenuated in HCC cells in vitro. The antitumor ability of SG7011let7T in vivo was maintained in mice with Hep3B xenograft tumor, whereas was greatly decreased against the SMMC-7721 xenograft tumor expressing a high level of let-7 similar with L-02 when compared to the wild-type adenovirus. These results suggested that SG7011let7T may be a promising anticancer agent or vector to mediate the expression of therapeutic gene, broadly applicable in the treatment for HCC and other cancers where the let-7 gene is downregulated
    • …
    corecore