136 research outputs found

    Global Update and Trends of Hidden Hunger, 1995-2011: The Hidden Hunger Index

    Get PDF
    Background Deficiencies in essential vitamins and minerals–also termed hidden hunger–are pervasive and hold negative consequences for the cognitive and physical development of children. Methods This analysis evaluates the change in hidden hunger over time in the form of one composite indicator–the Hidden Hunger Index (HHI)–using an unweighted average of prevalence estimates from the Nutrition Impact Model Study for anemia due to iron deficiency, vitamin A deficiency, and stunting (used as a proxy indicator for zinc deficiency). Net changes from 1995–2011 and population weighted regional means for various time periods are measured. Findings Globally, hidden hunger improved (-6.7 net change in HHI) from 1995–2011. Africa was the only region to see a deterioration in hidden hunger (+1.9) over the studied time period; East Asia and the Pacific performed exceptionally well (-13.0), while other regions improved only slightly. Improvements in HHI were mostly due to reductions in zinc and vitamin A deficiencies, while anemia due to iron deficiency persisted and even increased. Interpretation This analysis is critical for informing and tracking the impact of policy and programmatic efforts to reduce micronutrient deficiencies, to advance the global nutrition agenda, and to achieve the Millennium Development Goals (MDGs). However, there remains an unmet need to invest in gathering frequent, nationally representative, high-quality micronutrient data as we renew our efforts to scale up nutrition, and as we enter the post-2015 development agenda. Funding Preparation of this manuscript was funded by Sight and Life. There was no funding involved in the study design, data collection, analysis, or decision to publish

    A Large-Scale Distribution of Milk-Based Fortified Spreads: Evidence for a New Approach in Regions with High Burden of Acute Malnutrition

    Get PDF
    BACKGROUND: There are 146 million underweight children in the developing world, which contribute to up to half of the world's child deaths. In high burden regions for malnutrition, the treatment of individual children is limited by available resources. Here, we evaluate a large-scale distribution of a nutritional supplement on the prevention of wasting. METHODS AND FINDINGS: A new ready-to-use food (RUF) was developed as a diet supplement for children under three. The intervention consisted of six monthly distributions of RUF during the 2007 hunger gap in a district of Maradi region, Niger, for approximately 60,000 children (length: 60-85 cm). At each distribution, all children over 65 cm had their Mid-Upper Arm Circumference (MUAC) recorded. Admission trends for severe wasting (WFH<70% NCHS) in Maradi, 2002-2005 show an increase every year during the hunger gap. In contrast, in 2007, throughout the period of the distribution, the incidence of severe acute malnutrition (MUAC<110 mm) remained at extremely low levels. Comparison of year-over-year admissions to the therapeutic feeding program shows that the 2007 blanket distribution had essentially the same flattening effect on the seasonal rise in admissions as the 2006 individualized treatment of almost 60,000 children moderately wasted. CONCLUSIONS: These results demonstrate the potential for distribution of fortified spreads to reduce the incidence of severe wasting in large population of children 6-36 months of age. Although further information is needed on the cost-effectiveness of such distributions, these results highlight the importance of re-evaluating current nutritional strategies and international recommendations for high burden areas of childhood malnutrition

    5-FU-hydrogel inhibits colorectal peritoneal carcinomatosis and tumor growth in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Colorectal peritoneal carcinomatosis (CRPC) is a common form of systemic metastasis of intra-abdominal cancers. Intraperitoneal chemotherapy is a preferable option for colorectal cancer. Here we reported that a new system, 5-FU-loaded hydrogel system, can improve the therapeutic effects of intraperitoneal chemotherapy.</p> <p>Methods</p> <p>A biodegradable PEG-PCL-PEG (PECE) triblock copolymer was successfully synthesized. The biodegradable and temperature sensitive hydrogel was developed to load 5-FU. Methylene blue-loaded hydrogel were also developed for visible observation of the drug release. The effects and toxicity of the 5-FU-hydrogel system were evaluated in a murine CRPC model.</p> <p>Results</p> <p>The hydrogel system is an injectable flowing solution at ambient temperature and forms a non-flowing gel depot at physiological temperature. 5-FU-hydrogel was subsequently injected into abdominal cavity in mice with CT26 cancer cells peritoneal dissemination. The results showed that the hydrogel delivery system prolonged the release of methylene blue; the 5-FU-hydrogel significantly inhibited the peritoneal dissemination and growth of CT26 cells. Furthermore, intraperitoneal administration of the 5-FU-hydrogel was well tolerated and showed less hematologic toxicity.</p> <p>Conclusions</p> <p>Our data indicate that the 5-FU-hydrogel system can be considered as a new strategy for peritoneal carcinomatosis, and the hydrogel may provide a potential delivery system to load different chemotherapeutic drugs for peritoneal carcinomatosis of cancers.</p

    A Genome-Wide RNAi Screen Identifies Regulators of Cholesterol-Modified Hedgehog Secretion in Drosophila

    Get PDF
    Hedgehog (Hh) proteins are secreted molecules that function as organizers in animal development. In addition to being palmitoylated, Hh is the only metazoan protein known to possess a covalently-linked cholesterol moiety. The absence of either modification severely disrupts the organization of numerous tissues during development. It is currently not known how lipid-modified Hh is secreted and released from producing cells. We have performed a genome-wide RNAi screen in Drosophila melanogaster cells to identify regulators of Hh secretion. We found that cholesterol-modified Hh secretion is strongly dependent on coat protein complex I (COPI) but not COPII vesicles, suggesting that cholesterol modification alters the movement of Hh through the early secretory pathway. We provide evidence that both proteolysis and cholesterol modification are necessary for the efficient trafficking of Hh through the ER and Golgi. Finally, we identified several putative regulators of protein secretion and demonstrate a role for some of these genes in Hh and Wingless (Wg) morphogen secretion in vivo. These data open new perspectives for studying how morphogen secretion is regulated, as well as provide insight into regulation of lipid-modified protein secretion

    Effect of trimethoprim-sulphamethoxazole on the risk of malaria in HIV-infected Ugandan children living in an area of widespread antifolate resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Daily trimethoprim-sulfamethoxazole (TS) protects against malaria, but efficacy may be diminished as anti-folate resistance increases. This study assessed the incidence of falciparum malaria and the prevalence of resistance-conferring <it>Plasmodium falciparum </it>mutations in HIV-infected children receiving daily TS and HIV-uninfected children not taking TS.</p> <p>Materials and methods</p> <p>Subjects were 292 HIV-infected and 517 uninfected children from two cohort studies in Kampala, Uganda observed from August 2006 to December 2008. Daily TS was given to HIV-infected, but not HIV-uninfected children and all participants were provided an insecticide-treated bed net. Standardized protocols were used to measure the incidence of malaria and identify markers of antifolate resistance.</p> <p>Results</p> <p>Sixty-five episodes of falciparum malaria occurred in HIV-infected and 491 episodes in uninfected children during the observation period. TS was associated with a protective efficacy of 80% (0.10 vs. 0.45 episodes per person year, p < 0.001), and efficacy did not vary over three consecutive 9.5 month periods (81%, 74%, 80% respectively, p = 0.506). The prevalences of <it>dhfr </it>51I, 108N, and 59R and <it>dhps </it>437G and 540E mutations were each over 90% among parasites infecting both HIV-infected and uninfected children. Prevalence of the <it>dhfr </it>164L mutation, which is associated with high-level resistance, was significantly higher in parasites from HIV-infected compared to uninfected children (8% vs. 1%, p = 0.001). Sequencing of the <it>dhfr </it>and <it>dhps </it>genes identified only one additional polymorphism, <it>dhps </it>581G, in 2 of 30 samples from HIV-infected and 0 of 54 samples from uninfected children.</p> <p>Conclusion</p> <p>Despite high prevalence of known anti-folate resistance-mediating mutations, TS prophylaxis was highly effective against malaria, but was associated with presence of <it>dhfr </it>164L mutation.</p

    Thermal Variability Increases the Impact of Autumnal Warming and Drives Metabolic Depression in an Overwintering Butterfly

    Get PDF
    Increases in thermal variability elevate metabolic rate due to Jensen's inequality, and increased metabolic rate decreases the fitness of dormant ectotherms by increasing consumption of stored energy reserves. Theory predicts that ectotherms should respond to increased thermal variability by lowering the thermal sensitivity of metabolism, which will reduce the impact of the warm portion of thermal variability. We examined the thermal sensitivity of metabolic rate of overwintering Erynnis propertius (Lepidoptera: Hesperiidae) larvae from a stable or variable environment reared in the laboratory in a reciprocal common garden design, and used these data to model energy use during the winters of 1973–2010 using meteorological data to predict the energetic outcomes of metabolic compensation and phenological shifts. Larvae that experienced variable temperatures had decreased thermal sensitivity of metabolic rate, and were larger than those reared at stable temperatures, which could partially compensate for the increased energetic demands. Even with depressed thermal sensitivity, the variable environment was more energy-demanding than the stable, with the majority of this demand occurring in autumn. Autumn phenology changes thus had disproportionate influence on energy consumption in variable environments, and variable-reared larvae were most susceptible to overwinter energy drain. Therefore the energetic impacts of the timing of entry into winter dormancy will strongly influence ectotherm fitness in northern temperate environments. We conclude that thermal variability drives the expression of metabolic suppression in this species; that phenological shifts will have a greater impact on ectotherms in variable thermal environments; and that E. propertius will be more sensitive to shifts in phenology in autumn than in spring. This suggests that increases in overwinter thermal variability and/or extended, warm autumns, will negatively impact all non-feeding dormant ectotherms which lack the ability to suppress their overwinter metabolic thermal sensitivity

    Rice Snl6, a Cinnamoyl-CoA Reductase-Like Gene Family Member, Is Required for NH1-Mediated Immunity to Xanthomonas oryzae pv. oryzae

    Get PDF
    Rice NH1 (NPR1 homolog 1) is a key mediator of innate immunity. In both plants and animals, the innate immune response is often accompanied by rapid cell death at the site of pathogen infection. Over-expression of NH1 in rice results in resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo), constitutive expression of defense related genes and enhanced benzothiadiazole (BTH)- mediated cell death. Here we describe a forward genetic screen that identified a suppressor of NH1-mediated lesion formation and resistance, snl6. Comparative genome hybridization and fine mapping rapidly identified the genomic location of the Snl6 gene. Snl6 is a member of the cinnamoyl-CoA reductase (CCR)-like gene family. We show that Snl6 is required for NH1-mediated resistance to Xoo. Further, we show that Snl6 is required for pathogenesis-related gene expression. In contrast to previously described CCR family members, disruption of Snl6 does not result in an obvious morphologic phenotype. Snl6 mutants have reduced lignin content and increased sugar extractability, an important trait for the production of cellulosic biofuels. These results suggest the existence of a conserved group of CCR-like genes involved in the defense response, and with the potential to alter lignin content without affecting development

    Maternal Antibiotic-Induced Early Changes in Microbial Colonization Selectively Modulate Colonic Permeability and Inducible Heat Shock Proteins, and Digesta Concentrations of Alkaline Phosphatase and TLR-Stimulants in Swine Offspring

    Get PDF
    Elevated intake of high energy diets is a risk factor for the development of metabolic diseases and obesity. High fat diets cause alterations in colonic microbiota composition and increase gut permeability to bacterial lipopolysaccharide, and subsequent low-grade chronic inflammation in mice. Chronic inflammatory bowel diseases are increasing worldwide and may involve alterations in microbiota-host dialog. Metabolic disorders appearing in later life are also suspected to reflect changes in early programming. However, how the latter affects the colon remains poorly studied. Here, we hypothesized that various components of colonic physiology, including permeability, ion exchange and protective inducible heat shock proteins (HSP) are influenced in the short- and long-terms by early disturbances in microbial colonization. The hypothesis was tested in a swine model. Offspring were born to control mothers (n = 12) or mothers treated with the antibiotic (ATB) amoxicillin around parturition (n = 11). Offspring were slaughtered between 14 and 42 days of age to study short-term effects. For long-term effects, young adult offspring from the same litters consumed a normal or a palm oil-enriched diet for 4 weeks between 140 and 169 days of age. ATB treatment transiently modified maternal fecal microbiota although the minor differences observed for offspring colonic microbiota were nonsignificant. In the short-term, consistently higher HSP27 and HSP70 levels and transiently increased horseradish peroxidase permeability in ATB offspring colon were observed. Importantly, long-term consequences included reduced colonic horseradish peroxidase permeability, and increased colonic digesta alkaline phosphatase (AP) and TLR2- and TLR4-stimulant concentrations in rectal digesta in adult ATB offspring. Inducible HSP27 and HSP70 did not change. Interactions between early ATB treatment and later diet were noted for paracellular permeability and concentrations of colonic digesta AP. In conclusion, our data suggest that early ATB-induced changes in bacterial colonization modulate important aspects of colonic physiology in the short- and longterms
    • …
    corecore