105 research outputs found
Correlation between CD4 counts of HIV patients and enteric protozoan in different seasons – An experience of a tertiary care hospital in Varanasi (India)
<p>Abstract</p> <p>Background</p> <p>Protozoan infections are the most serious among all the superimposed infections in HIV patients and claim a number of lives every year. The line of treatment being different for diverse parasites necessitates a definitive diagnosis of the etiological agents to avoid empirical treatment. Thus, the present study has been aimed to elucidate the associations between diarrhoea and CD4 counts and to study the effect of HAART along with management of diarrhoea in HIV positive patients. This study is the first of its kind in this area where an attempt was made to correlate seasonal variation and intestinal protozoan infestations.</p> <p>Methods</p> <p>The study period was from January 2006 to October 2007 wherein stool samples were collected from 366 HIV positive patients with diarrhea attending the ART centre, inpatient department and ICTC of S.S. hospital, I.M.S., B.H.U., Varanasi. Simultaneously, CD4 counts were recorded to assess the status of HIV infection vis-à-vis parasitic infection. The identification of pathogens was done on the basis of direct microscopy and different staining techniques.</p> <p>Results</p> <p>Of the 366 patients, 112 had acute and 254 had chronic diarrhea. The percentages of intestinal protozoa detected were 78.5% in acute and 50.7% in chronic cases respectively. Immune restoration was observed in 36.6% patients after treatment on the basis of clinical observation and CD4 counts. In 39.8% of HIV positive cases <it>Cryptosporidium </it>spp. was detected followed by <it>Microsporidia </it>spp. (26.7%). The highest incidence of intestinal infection was in the rainy season. However, infection with <it>Cyclospora </it>spp. was at its peak in the summer. Patients with chronic diarrhea had lower CD4 cell counts. The maximum parasitic isolation was in the patients whose CD4 cell counts were below 200 cells/μl.</p> <p>Conclusion</p> <p>There was an inverse relation between the CD4 counts and duration of diarrhea. <it>Cryptosporidium </it>spp. was isolated maximum among all the parasites in the HIV patients. The highest incidence of infection was seen in the rainy season.</p
Variation in Array Size, Monomer Composition and Expression of the Macrosatellite DXZ4
Macrosatellites are some of the most polymorphic regions of the human genome, yet many remain uncharacterized despite the association of some arrays with disease susceptibility. This study sought to explore the polymorphic nature of the X-linked macrosatellite DXZ4. Four aspects of DXZ4 were explored in detail, including tandem repeat copy number variation, array instability, monomer sequence polymorphism and array expression. DXZ4 arrays contained between 12 and 100 3.0 kb repeat units with an average array containing 57. Monomers were confirmed to be arranged in uninterrupted tandem arrays by restriction digest analysis and extended fiber FISH, and therefore DXZ4 encompasses 36–288 kb of Xq23. Transmission of DXZ4 through three generations in three families displayed a high degree of meiotic instability (8.3%), consistent with other macrosatellite arrays, further highlighting the unstable nature of these sequences in the human genome. Subcloning and sequencing of complete DXZ4 monomers identified numerous single nucleotide polymorphisms and alleles for the three microsatellite repeats located within each monomer. Pairwise comparisons of DXZ4 monomer sequences revealed that repeat units from an array are more similar to one another than those originating from different arrays. RNA fluorescence in situ hybridization revealed significant variation in DXZ4 expression both within and between cell lines. DXZ4 transcripts could be detected originiating from both the active and inactive X chromosome. Expression levels of DXZ4 varied significantly between males, but did not relate to the size of the array, nor did inheritance of the same array result in similar expression levels. Collectively, these studies provide considerable insight into the polymorphic nature of DXZ4, further highlighting the instability and variation potential of macrosatellites in the human genome
Agronomic Management of Indigenous Mycorrhizas
Many of the advantages conferred to plants by arbuscular mycorrhiza (AM) are associated to the ability of AM plants to explore a greater volume of soil through the extraradical mycelium. Sieverding (1991) estimates that for each centimetre of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the circumstances. Due to the enhancement of the volume of soil explored and the ability of the extraradical mycelium to absorb and translocate nutrients to the plant, one of the most obvious and important advantages resulting from mycorrhization is the uptake of nutrients. Among of which the ones that have immobilized forms in soil, such as P, assume particular significance. Besides this, many other benefits are recognized for AM plants (Gupta et al, 2000): water stress alleviation (Augé, 2004; Cho et al, 2006), protection from root pathogens (Graham, 2001), tolerance to toxic heavy metals and phytoremediation (Audet and Charest, 2006; Göhre and Paszkowski, 2006), tolerance to adverse conditions such as very high or low temperature, high salinity (Sannazzaro et al, 2006), high or low pH (Yano and Takaki, 2005) or better performance during transplantation shock (Subhan et al, 1998). The extraradical hyphae also stabilize soil aggregates by both enmeshing soil particles (Miller e Jastrow, 1992) and producing a glycoprotein, golmalin, which may act as a glue-like substance to adhere soil particles together (Wright and Upadhyaya, 1998).
Despite the ubiquous distribution of mycorrhizal fungi (Smith and Read, 2000) and only a relative specificity between host plants and fungal isolates (McGonigle and Fitter, 1990), the obligate nature of the symbiosis implies the establishment of a plant propagation system, either under greenhouse conditions or in vitro laboratory propagation. These techniques result in high inoculum production costs, which still remains a serious problem since they are not competitive with production costs of phosphorus fertilizer. Even if farmers understand the significance of sustainable agricultural systems, the reduction of phosphorus inputs by using AM fungal inocula alone cannot be justified except, perhaps, in the case of high value crops (Saioto and Marumoto, 2002). Nurseries, high income horticulture farmers and no-agricultural application such as rehabilitation of degraded or devegetated landscapes are examples of areas where the use of commercial inoculum is current. Another serious problem is quality of commercial available products concerning guarantee of phatogene free content, storage conditions, most effective application methods and what types to use. Besides the information provided by suppliers about its inoculum can be deceiving, as from the usually referred total counts, only a fraction may be effective for a particular plant or in specific soil conditions. Gianinazzi and Vosátka (2004) assume that progress should be made towards registration procedures that stimulate the development of the mycorrhizal industry.
Some on-farm inoculum production and application methods have been studied, allowing farmers to produce locally adapted isolates and generate a taxonomically diverse inoculum (Mohandas et al, 2004; Douds et al, 2005). However the inocula produced this way are not readily processed for mechanical application to the fields, being an obstacle to the utilization in large scale agriculture, especially row crops, moreover it would represent an additional mechanical operation with the corresponding economic and soil compaction costs.
It is well recognized that inoculation of AM fungi has a potential significance in not only sustainable crop production, but also environmental conservation. However, the status quo of inoculation is far from practical technology that can be widely used in the field. Together a further basic understanding of the biology and diversity of AM fungi is needed (Abbott at al, 1995; Saito and Marumoto, 2002).
Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species introductions and the potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. Schwartz et al, (2006) recommend that a careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial.
Agricultural practices such as crop rotation, tillage, weed control and fertilizer apllication all produce changes in the chemical, physical and biological soil variables and affect the ecological niches available for occupancy by the soil biota, influencing in different ways the symbiosis performance and consequently the inoculum development, shaping changes and upset balance of native populations. The molecular biology tools developed in the latest years have been very important for our perception of these changes, ensuing awareness of management choice implications in AM development.
In this context, for extensive farming systems and regarding environmental and economic costs, the identification of agronomic management practices that allow controlled manipulation of the fungal community and capitalization of AM mutualistic effect making use of local inoculum, seem to be a wise option for mycorrhiza promotion and development of sustainable crop production
Common Variants within MECP2 Confer Risk of Systemic Lupus Erythematosus
Systemic lupus erythematosus (SLE) is a predominantly female autoimmune disease that affects multiple organ systems. Herein, we report on an X-chromosome gene association with SLE. Methyl-CpG-binding protein 2 (MECP2) is located on chromosome Xq28 and encodes for a protein that plays a critical role in epigenetic transcriptional regulation of methylation-sensitive genes. Utilizing a candidate gene association approach, we genotyped 21 SNPs within and around MECP2 in SLE patients and controls. We identify and replicate association between SLE and the genomic element containing MECP2 in two independent SLE cohorts from two ethnically divergent populations. These findings are potentially related to the overexpression of methylation-sensitive genes in SLE
First Steps in Eukaryogenesis: Physical phenomena in the origin and evolution of chromosome structure
Our present understanding of the origin and evolution of chromosomes differs considerably from current understanding of the origin and evolution of the cell itself. Chromosome origins have been less prominent in research, as the emphasis has not shifted so far appreciably from the phenomenon of primeval nucleic acid encapsulation to that of the origin of gene organization, expression, and regulation. In this work we discuss some reasons why preliminary steps in this direction are being taken. We have been led to examine properties that have contributed to raise the ancestral prokaryotic programmes to a level where we can appreciate in eukaryotes a clear departure from earlier themes in the evolution of the cell from the last common ancestor. We shift our point of view from the evolution of cell morphology to the point of view of the genes. In particular, we focus attention on possible physical bases for the way transmission of information has evolved in eukaryotes, namely, the inactivation of whole chromosomes. The special case of the inactivation of the X chromosome in mammals is discussed, paying particular attention to the physical process of the spread of X inactivation in monotremes (platypus and echidna). When experimental data is unavailable some theoretical analysis is possible based on the idea that in certain cases collective phenomena in genetics, rather than chemical detail, are better correlates of complex chemical processes
Exploring molecular variation in Schistosoma japonicum in China
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The attached file is the published version of the article
Evolutionary diversity and developmental regulation of X-chromosome inactivation
X-chromosome inactivation (XCI) results in the transcriptional silencing of one X-chromosome in females to attain gene dosage parity between XX female and XY male mammals. Mammals appear to have developed rather diverse strategies to initiate XCI in early development. In placental mammals XCI depends on the regulatory noncoding RNA X-inactive specific transcript (Xist), which is absent in marsupials and monotremes. Surprisingly, even placental mammals show differences in the initiation of XCI in terms of Xist regulation and the timing to acquire dosage compensation. Despite this, all placental mammals achieve chromosome-wide gene silencing at some point in development, and this is maintained by epigenetic marks such as chromatin modifications and DNA methylation. In this review, we will summarise recent findings concerning the events that occur downstream of Xist RNA coating of the inactive X-chromosome (Xi) to ensure its heterochromatinization and the maintenance of the inactive state in the mouse and highlight similarities and differences between mammals
Stable transmission of reversible modifications: maintenance of epigenetic information through the cell cycle
Even though every cell in a multicellular organism contains the same genes, the differing spatiotemporal expression of these genes determines the eventual phenotype of a cell. This means that each cell type contains a specific epigenetic program that needs to be replicated through cell divisions, along with the genome, in order to maintain cell identity. The stable inheritance of these programs throughout the cell cycle relies on several epigenetic mechanisms. In this review, DNA methylation and histone methylation by specific histone lysine methyltransferases (KMT) and the Polycomb/Trithorax proteins are considered as the primary mediators of epigenetic inheritance. In addition, non-coding RNAs and nuclear organization are implicated in the stable transfer of epigenetic information. Although most epigenetic modifications are reversible in nature, they can be stably maintained by self-recruitment of modifying protein complexes or maintenance of these complexes or structures through the cell cycle
- …