100 research outputs found

    Some aspects of presumed filtered density functions formulation in the context of large eddy simulation of turbulent reacting flows

    Get PDF
    In Large Eddy Simulations (LES) of turbulent flows, spatially-averaged versions of the Navier-Stokes equations are solved on a grid, which is coarse relative to the smallest turbulent length scales. In order to couple the detailed chemistry and the computed flow field in LES of reacting flows, the so-called filtered density function-based approach for subfilter-scale modelling was suggested. This approach was named as the laminar flamelet and allowed to link the complex chemistry to a single variable, i.e. mixture fraction. The mixture fraction is obtained by the solution of corresponding filtered transport equation and subgrid-scale (SGS) variance (the residual field) is usually modelled. The objective of this article is to present in-depth analysis of filtered density functions (FDFs) by analysing experimental data obtained from two-dimensional planar, laser induced fluorescence measurements in isothermal swirling coaxial turbulent jets at a constant Reynolds number of 29000. The FDFs were analysed as a function of flow swirl number, spatial locations in the flow and were linked to the measured subgrid scale variance. In addition, presumed FDFs were also analysed and associated laminar flamelet solution integration errors were evaluated. It was experimentally found that the FDFs can become unimodal when SGS variance reaches a certain value. However, bimodal FDFs were observed in flow regions with high SGS variance. It was demonstrated that bimodality does not automatically result in large errors in resolved variables when top-hat FDF or -FDF formulations are used. It was suggested that possible source of errors in resolved variables could be linked to the SGS variance models rather than to the presumed FDF-based models

    Rationalising drug delivery using nanoparticles: a combined simulation and immunology study of GnRH adsorbed to silica nanoparticles

    Get PDF
    Silica nanoparticles (SiNPs) have been shown to have significant potential for drug delivery and as adjuvants for vaccines. We have simulated the adsorption of GnRH-I (gonadotrophin releasing hormone I) and a cysteine-tagged modification (cys-GnRH-I) to model silica surfaces, as well as its conjugation to the widely-used carrier protein bovine serum albumin (BSA). Our subsequent immunological studies revealed no significant antibody production was caused by the peptide-SiNP systems, indicating that the treatment was not effective. However, the testosterone response with the native peptide-SiNPs indicated a drug effect not found with cys-GnRH-I-SiNPs; this behaviour is explained by the specific orientation of the peptides at the silica surface found in the simulations. With the BSA systems, we found significant testosterone reduction, particularly for the BSA-native conjugates, and an antibody response that was notably higher with the SiNPs acting as an adjuvant; this behaviour again correlates well with the epitope presentation predicted by the simulations. The range of immunological and hormone response can therefore be interpreted and understood by the simulation results and the presentation of the peptides to solution, paving the way for the future rational design of drug delivery and vaccine systems guided by biomolecular simulation

    Evaluation of range of motion restriction within the hip joint

    Get PDF
    In Total Hip Arthroplasty, determining the impingement free range of motion requirement is a complex task. This is because in the native hip, motion is restricted by both impingement as well as soft tissue restraint. The aim of this study is to determine a range of motion benchmark which can identify motions which are at risk from impingement and those which are constrained due to soft tissue. Two experimental methodologies were used to determine motions which were limited by impingement and those motions which were limited by both impingement and soft tissue restraint. By comparing these two experimental results, motions which were limited by impingement were able to be separated from those motions which were limited by soft tissue restraint. The results show motions in extension as well as flexion combined with adduction are limited by soft tissue restraint. Motions in flexion, flexion combined with abduction and adduction are at risk from osseous impingement. Consequently, these motions represent where the maximum likely damage will occur in femoroacetabular impingement or at most risk of prosthetic impingement in Total Hip Arthroplasty

    Prospective Study Examining Clinical Outcomes Associated with a Negative Pressure Wound Therapy System and Barker’s Vacuum Packing Technique

    Get PDF
    Background The open abdomen has become a common procedure in the management of complex abdominal problems and has improved patient survival. The method of temporary abdominal closure (TAC) may play a role in patient outcome. Methods A prospective, observational, open-label study was performed to evaluate two TAC techniques in surgical and trauma patients requiring open abdomen management: Barker’s vacuum-packing technique (BVPT) and the ABTheraTM open abdomen negative pressure therapy system (NPWT). Study endpoints were days to and rate of 30-day primary fascial closure (PFC) and 30-day all-cause mortality. Results Altogether, 280 patients were enrolled from 20 study sites. Among them, 168 patients underwent at least 48 hours of consistent TAC therapy (111 NPWT, 57 BVPT). The two study groups were well matched demographically. Median days to PFC were 9 days for NPWT versus 12 days for BVPT (p = 0.12). The 30-day PFC rate was 69 % for NPWT and 51 % for BVPT (p = 0.03). The 30-day all-cause mortality was 14 % for NPWT and 30 % for BVPT (p = 0.01). Multivariate logistic regression analysis identified that patients treated with NPWT were significantly more likely to survive than the BVPT patients [odds ratio 3.17 (95 % confidence interval 1.22–8.26); p = 0.02] after controlling for age, severity of illness, and cumulative fluid administration. Conclusions Active NPWT is associated with significantly higher 30-day PFC rates and lower 30-day all-cause mortality among patients who require an open abdomen for at least 48 h during treatment for critical illness

    Validity and test-retest reliability of manual goniometers for measuring passive hip range of motion in femoroacetabular impingement patients.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aims of this study were to evaluate the construct validity (known group), concurrent validity (criterion based) and test-retest (intra-rater) reliability of manual goniometers to measure passive hip range of motion (ROM) in femoroacetabular impingement patients and healthy controls.</p> <p>Methods</p> <p>Passive hip flexion, abduction, adduction, internal and external rotation ROMs were simultaneously measured with a conventional goniometer and an electromagnetic tracking system (ETS) on two different testing sessions. A total of 15 patients and 15 sex- and age-matched healthy controls participated in the study.</p> <p>Results</p> <p>The goniometer provided greater hip ROM values compared to the ETS (range 2.0-18.9 degrees; <it>P </it>< 0.001); good concurrent validity was only achieved for hip abduction and internal rotation, with intraclass correlation coefficients (ICC) of 0.94 and 0.88, respectively. Both devices detected lower hip abduction ROM in patients compared to controls (<it>P </it>< 0.01). Test-retest reliability was good with ICCs higher 0.90, except for hip adduction (0.82-0.84). Reliability estimates did not differ between the goniometer and the ETS.</p> <p>Conclusions</p> <p>The present study suggests that goniometer-based assessments considerably overestimate hip joint ROM by measuring intersegmental angles (e.g., thigh flexion on trunk for hip flexion) rather than true hip ROM. It is likely that uncontrolled pelvic rotation and tilt due to difficulties in placing the goniometer properly and in performing the anatomically correct ROM contribute to the overrating of the arc of these motions. Nevertheless, conventional manual goniometers can be used with confidence for longitudinal assessments in the clinic.</p

    Interaction of β-Sheet Folds with a Gold Surface

    Get PDF
    The adsorption of proteins on inorganic surfaces is of fundamental biological importance. Further, biomedical and nanotechnological applications increasingly use interfaces between inorganic material and polypeptides. Yet, the underlying adsorption mechanism of polypeptides on surfaces is not well understood and experimentally difficult to analyze. Therefore, we investigate here the interactions of polypeptides with a gold(111) surface using computational molecular dynamics (MD) simulations with a polarizable gold model in explicit water. Our focus in this paper is the investigation of the interaction of polypeptides with β-sheet folds. First, we concentrate on a β-sheet forming model peptide. Second, we investigate the interactions of two domains with high β-sheet content of the biologically important extracellular matrix protein fibronectin (FN). We find that adsorption occurs in a stepwise mechanism both for the model peptide and the protein. The positively charged amino acid Arg facilitates the initial contact formation between protein and gold surface. Our results suggest that an effective gold-binding surface patch is overall uncharged, but contains Arg for contact initiation. The polypeptides do not unfold on the gold surface within the simulation time. However, for the two FN domains, the relative domain-domain orientation changes. The observation of a very fast and strong adsorption indicates that in a biological matrix, no bare gold surfaces will be present. Hence, the bioactivity of gold surfaces (like bare gold nanoparticles) will critically depend on the history of particle administration and the proteins present during initial contact between gold and biological material. Further, gold particles may act as seeds for protein aggregation. Structural re-organization and protein aggregation are potentially of immunological importance

    The main actors involved in parasitization of Heliothis virescens larva

    Get PDF
    At the moment of parasitization by another insect, the host Heliothis larva is able to defend itself by the activation of humoral and cellular defenses characterized by unusual reactions of hemocytes in response to external stimuli. Here, we have combined light and electron microscopy, staining reactions, and immunocytochemical characterization to analyze the activation and deactivation of one of the most important immune responses involved in invertebrates defense, i.e., melanin production and deposition. The insect host/parasitoid system is a good model to study these events. The activated granulocytes of the host insect are a major repository of amyloid fibrils forming a lattice in the cell. Subsequently, the exocytosed amyloid lattice constitutes the template for melanin deposition in the hemocel. Furthermore, cross-talk between immune and neuroendocrine systems mediated by hormones, cytokines, and neuromodulators with the activation of stress-sensoring circuits to produce and release molecules such as adrenocorticotropin hormone, alpha melanocyte-stimulating hormone, and neutral endopeptidase occurs. Thus, parasitization promotes massive morphological and physiological modifications in the host insect hemocytes and mimics general stress conditions in which phenomena such as amyloid fibril formation, melanin polymerization, pro-inflammatory cytokine production, and activation of the adrenocorticotropin hormone system occur. These events observed in invertebrates are also reported in the literature for vertebrates, suggesting that this network of mechanisms and responses is maintained throughout evolution
    corecore