15 research outputs found
A systematic review of studies measuring and reporting hearing aid usage in older adults since 1999: a descriptive summary of measurement tools
Objective: A systematic review was conducted to identify and quality assess how studies published since 1999 have
measured and reported the usage of hearing aids in older adults. The relationship between usage and other dimensions of hearing aid outcome, age and hearing loss are summarised.
Data sources: Articles were identified through systematic searches in PubMed/MEDLINE, The University of Nottingham
Online Catalogue, Web of Science and through reference checking. Study eligibility criteria: (1) participants aged fifty years or over with sensori-neural hearing loss, (2) provision of an air conduction hearing aid, (3) inclusion of hearing aid usage measure(s) and (4) published between 1999 and 2011.
Results: Of the initial 1933 papers obtained from the searches, a total of 64 were found eligible for review and were quality assessed on six dimensions: study design, choice of outcome instruments, level of reporting (usage, age, and audiometry) and cross validation of usage measures. Five papers were rated as being of high quality (scoring 10–12), 35 papers were rated as being of moderate quality (scoring 7–9), 22 as low quality (scoring 4–6) and two as very low quality (scoring 0–2). Fifteen different methods were identified for assessing the usage of hearing aids.
Conclusions: Generally, the usage data reviewed was not well specified. There was a lack of consistency and robustness in
the way that usage of hearing aids was assessed and categorised. There is a need for more standardised level of reporting of hearing aid usage data to further understand the relationship between usage and hearing aid outcomes
Snowball Earth ocean chemistry driven by extensive ridge volcanism during Rodinia breakup
During Neoproterozoic Snowball Earth glaciations, the oceans gained massive amounts of alkalinity, culminating in the deposition of massive cap carbonates on deglaciation. Changes in terrestrial runoff associated with both breakup of the Rodinia supercontinent and deglaciation can explain some, but not all of the requisite changes in ocean chemistry. Submarine volcanism along shallow ridges formed during supercontinent breakup results in the formation of large volumes of glassy hyaloclastite, which readily alters to palagonite. Here we estimate fluxes of calcium, magnesium, phosphorus, silica and bicarbonate associated with these shallow-ridge processes, and argue that extensive submarine volcanism during the breakup of Rodinia made an important contribution to changes in ocean chemistry during Snowball Earth glaciations. We use Monte Carlo simulations to show that widespread hyaloclastite alteration under near-global sea-ice cover could lead to Ca2+ and Mg2+ supersaturation over the course of the glaciation that is sufficient to explain the volume of cap carbonates deposited. Furthermore, our conservative estimates of phosphorus release are sufficient to explain the observed P:Fe ratios in sedimentary iron formations from this time. This large phosphorus release may have fuelled primary productivity, which in turn would have contributed to atmospheric O2 rises that followed Snowball Earth episodes
