107 research outputs found

    Using Scenarios to Validate Requirements through the use of Eye-Tracking in Prototyping

    Get PDF
    Research has shown that eliciting and capturing the correct behavior of systems reduces the number of defects that a system contains. A requirements engineer will model the functions of the system to gain a comprehensive understanding of the system in question. Engineers must verify the model for correctness by either having another engineer review it or build a prototype and validate with a stakeholder. However, research has shown that this form of verification can be ineffective because looking at an existing model can be suggestive and stump the development of new ideas. This paper provides an automated technique that can be used as an unbiased review of use case scenarios. Using the prototype and a scenario, a stakeholder can be guided through the use case scenario demonstrating where they expect to find the next step while their eye movements are tracked. Analysis of the eye tracking data can be used to identify missing requirements such as interaction steps that should have alternative sequences or determining problems with the flow of actions

    Suitability of PSA-detected localised prostate cancers for focal therapy: Experience from the ProtecT study

    Get PDF
    This article is available through a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. Copyright @ 2011 Cancer Research UK.Background: Contemporary screening for prostate cancer frequently identifies small volume, low-grade lesions. Some clinicians have advocated focal prostatic ablation as an alternative to more aggressive interventions to manage these lesions. To identify which patients might benefit from focal ablative techniques, we analysed the surgical specimens of a large sample of population-detected men undergoing radical prostatectomy as part of a randomised clinical trial. Methods: Surgical specimens from 525 men who underwent prostatectomy within the ProtecT study were analysed to determine tumour volume, location and grade. These findings were compared with information available in the biopsy specimen to examine whether focal therapy could be provided appropriately. Results: Solitary cancers were found in prostatectomy specimens from 19% (100 out of 525) of men. In addition, 73 out of 425 (17%) men had multiple cancers with a solitary significant tumour focus. Thus, 173 out of 525 (33%) men had tumours potentially suitable for focal therapy. The majority of these were small, well-differentiated lesions that appeared to be pathologically insignificant (38–66%). Criteria used to select patients for focal prostatic ablation underestimated the cancer's significance in 26% (34 out of 130) of men and resulted in overtreatment in more than half. Only 18% (24 out of 130) of men presumed eligible for focal therapy, actually had significant solitary lesions. Conclusion: Focal therapy appears inappropriate for the majority of men presenting with prostate-specific antigen-detected localised prostate cancer. Unifocal prostate cancers suitable for focal ablation are difficult to identify pre-operatively using biopsy alone. Most lesions meeting criteria for focal ablation were either more aggressive than expected or posed little threat of progression.National Institute for Health Researc

    Redox evolution of a degassing magma rising to the surface.

    No full text
    Volatiles carried by magmas, either dissolved or exsolved, have a fundamental effect on a variety of geological phenomena, such as magma dynamics1–5 and the composition of the Earth's atmosphere 6. In particular, the redox state of volcanic gases emanating at the Earth's surface is widely believed to mirror that of the magma source, and is thought to have exerted a first-order control on the secular evolution of atmospheric oxygen6,7. Oxygen fugacity (fO2 ) estimated from lava or related gas chemistry, however, may vary by as much as one log unit8–10, and the reason for such differences remains obscure. Here we use a coupled chemical–physical model of conduit flow to show that the redox state evolution of an ascending magma, and thus of its coexisting gas phase, is strongly dependent on both the composition and the amount of gas in the reservoir. Magmas with no sulphur show a systematic fO2 increase during ascent, by as much as 2 log units. Magmas with sulphur show also a change of redox state during ascent, but the direction of change depends on the initial fO2 in the reservoir. Our calculations closely reproduce the H2S/SO2 ratios of volcanic gases observed at convergent settings, yet the difference between fO2 in the reservoir and that at the exit of the volcanic conduit may be as much as 1.5 log units. Thus, the redox state of erupted magmas is not necessarily a good proxy of the redox state of the gases they emit. Our findings may require re-evaluation of models aimed at quantifying the role of magmatic volatiles in geological processes

    Mixing of rhyolite, trachyte and basalt magma erupted from a vertically and laterally zoned reservoir, composite flow P1, Gran Canaria

    Get PDF
    The 14.1 Ma composite welded ignimbrite P1 (45 km3 DRE) on Gran Canaria is compositionally zoned from a felsic lower part to a basaltic top. It is composed of four component magmas mixed in vertically varying proportions: (1) Na-rhyolite (10 km3) zoned from crystal-poor to highly phyric; (2) a continuously zoned, evolved trachyte to sodic trachyandesite magma group (6 km3); (3) a minor fraction of Na-poor trachyandesite (<1 km3); and (4) nearly aphyric basalt (26 km3) zoned from 4.3 to 5.2 wt% MgO. We distinguish three sites and phases of mixing: (a) Mutual mineral inclusions show that mixing between trachytic and rhyolitic magmas occurred during early stages of their intratelluric crystallization, providing evidence for long-term residence in a common reservoir prior to eruption. This first phase of mixing was retarded by increasing viscosity of the rhyolite magma upon massive anorthoclase precipitation and accumulation. (b) All component magmas probably erupted through a ring-fissure from a common upper-crustal reservoir into which the basalt intruded during eruption. The second phase of mixing occurred during simultaneous withdrawal of magmas from the chamber and ascent through the conduit. The overall withdrawal and mixing pattern evolved in response to pre-eruptive chamber zonation and density and viscosity relationships among the magmas. Minor sectorial variations around the caldera reflect both varying configurations at the conduit entrance and unsteady discharge. (c) During each eruptive pulse, fragmentation and particulate transport in the vent and as pyroclastic flows caused additional mixing by reducing the length scale of heterogeneities. Based on considerations of magma density changes during crystallization, magma temperature constraints, and the pattern of withdrawal during eruption, we propose that eruption tapped the P1 magma chamber during a transient state of concentric zonation, which had resulted from destruction of a formerly layered zonation in order to maintain gravitational equilibrium. Our model of magma chamber zonation at the time of eruption envisages a basal high-density Na-poor trachyandesite layer that was overlain by a central mass of highly phyric rhyolite magma mantled by a sheath of vertically zoned trachyte-trachyandesite magma along the chamber walls. A conventional model of vertically stacked horizontal layers cannot account for the deduced density relationships nor for the withdrawal pattern

    Cross-Serotype Immunity Induced by Immunization with a Conserved Rhinovirus Capsid Protein

    Get PDF
    Human rhinovirus (RV) infections are the principle cause of common colds and precipitate asthma and COPD exacerbations. There is currently no RV vaccine, largely due to the existence of ∼150 strains. We aimed to define highly conserved areas of the RV proteome and test their usefulness as candidate antigens for a broadly cross-reactive vaccine, using a mouse infection model. Regions of the VP0 (VP4+VP2) capsid protein were identified as having high homology across RVs. Immunization with a recombinant VP0 combined with a Th1 promoting adjuvant induced systemic, antigen specific, cross-serotype, cellular and humoral immune responses. Similar cross-reactive responses were observed in the lungs of immunized mice after infection with heterologous RV strains. Immunization enhanced the generation of heterosubtypic neutralizing antibodies and lung memory T cells, and caused more rapid virus clearance. Conserved domains of the RV capsid therefore induce cross-reactive immune responses and represent candidates for a subunit RV vaccine

    Serological Response to the 2009 Pandemic Influenza A (H1N1) Virus for Disease Diagnosis and Estimating the Infection Rate in Thai Population

    Get PDF
    BACKGROUND: Individuals infected with the 2009 pandemic virus A(H1N1) developed serological response which can be measured by hemagglutination-inhibition (HI) and microneutralization (microNT) assays. METHODOLOGY/PRINCIPAL FINDINGS: MicroNT and HI assays for specific antibody to the 2009 pandemic virus were conducted in serum samples collected at the end of the first epidemic wave from various groups of Thai people: laboratory confirmed cases, blood donors and health care workers (HCW) in Bangkok and neighboring province, general population in the North and the South, as well as archival sera collected at pre- and post-vaccination from vaccinees who received influenza vaccine of the 2006 season. This study demonstrated that goose erythrocytes yielded comparable HI antibody titer as compared to turkey erythrocytes. In contrast to the standard protocol, our investigation found out the necessity to eliminate nonspecific inhibitor present in the test sera by receptor destroying enzyme (RDE) prior to performing microNT assay. The investigation in pre-pandemic serum samples showed that HI antibody was more specific to the 2009 pandemic virus than NT antibody. Based on data from pre-pandemic sera together with those from the laboratory confirmed cases, HI antibody titers ≥ 40 for adults and ≥ 20 for children could be used as the cut-off level to differentiate between the individuals with or without past infection by the 2009 pandemic virus. CONCLUSIONS/SIGNIFICANCE: Based on the cut-off criteria, the infection rates of 7 and 12.8% were estimated in blood donors and HCW, respectively after the first wave of the 2009 influenza pandemic. Among general population, the infection rate of 58.6% was found in children versus 3.1% in adults

    Hydrothermal alteration of andesitic lava domes can lead to explosive volcanic behaviour

    Get PDF
    Dome-forming volcanoes are among the most hazardous volcanoes on Earth. Magmatic outgassing can be hindered if the permeability of a lava dome is reduced, promoting pore pressure augmentation and explosive behaviour. Laboratory data show that acid-sulphate alteration, common to volcanoes worldwide, can reduce the permeability on the sample lengthscale by up to four orders of magnitude and is the result of pore- and microfracture-filling mineral precipitation. Calculations using these data demonstrate that intense alteration can reduce the equivalent permeability of a dome by two orders of magnitude, which we show using numerical modelling to be sufficient to increase pore pressure. The fragmentation criterion shows that the predicted pore pressure increase is capable of fragmenting the majority of dome-forming materials, thus promoting explosive volcanism. It is crucial that hydrothermal alteration, which develops over months to years, is monitored at dome-forming volcanoes and is incorporated into real-time hazard assessments

    magma mixing history and dynamics of an eruption trigger

    Get PDF
    The most violent and catastrophic volcanic eruptions on Earth have been triggered by the refilling of a felsic volcanic magma chamber by a hotter more mafic magma. Examples include Vesuvius 79 AD, Krakatau 1883, Pinatubo 1991, and Eyjafjallajokull 2010. Since the first hypothesis, plenty of evidence of magma mixing processes, in all tectonic environments, has accumulated in the literature allowing this natural process to be defined as fundamental petrological processes playing a role in triggering volcanic eruptions, and in the generation of the compositional variability of igneous rocks. Combined with petrographic, mineral chemistry and geochemical investigations, isotopic analyses on volcanic rocks have revealed compositional variations at different length scales pointing to a complex interplay of fractional crystallization, mixing/mingling and crustal contamination during the evolution of several magmatic feeding systems. But to fully understand the dynamics of mixing and mingling processes, that are impossible to observe directly, at a realistically large scale, it is necessary to resort to numerical simulations of the complex interaction dynamics between chemically different magmas
    corecore