35 research outputs found
Robotic Wireless Sensor Networks
In this chapter, we present a literature survey of an emerging, cutting-edge,
and multi-disciplinary field of research at the intersection of Robotics and
Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor
Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system
that aims to achieve certain sensing goals while meeting and maintaining
certain communication performance requirements, through cooperative control,
learning and adaptation. While both of the component areas, i.e., Robotics and
WSN, are very well-known and well-explored, there exist a whole set of new
opportunities and research directions at the intersection of these two fields
which are relatively or even completely unexplored. One such example would be
the use of a set of robotic routers to set up a temporary communication path
between a sender and a receiver that uses the controlled mobility to the
advantage of packet routing. We find that there exist only a limited number of
articles to be directly categorized as RWSN related works whereas there exist a
range of articles in the robotics and the WSN literature that are also relevant
to this new field of research. To connect the dots, we first identify the core
problems and research trends related to RWSN such as connectivity,
localization, routing, and robust flow of information. Next, we classify the
existing research on RWSN as well as the relevant state-of-the-arts from
robotics and WSN community according to the problems and trends identified in
the first step. Lastly, we analyze what is missing in the existing literature,
and identify topics that require more research attention in the future
High-Precision Geometric Correction of Tiangong-2 Interferometric Imaging Radar Altimeter
Recommended from our members
Automated multisensor registration: requirements and techniques
A conceptual approach is presented that integrates a variety of registration techniques and selects the candidate algorithm based on certain performance criteria. The performance requirements for an operational algorithm are formulated given the spatially, temporally, and spectrally varying factors that influence the image characteristics and the science requirements of various applications. Several computational techniques are tested and their performance evaluated using a multisensor test data set assembled from the Landsat TM, Seasat, SIR-B, TIMS, and SPOT sensors. -from Author
Recommended from our members
Automated multisensor registration: requirements and techniques
A conceptual approach is presented that integrates a variety of registration techniques and selects the candidate algorithm based on certain performance criteria. The performance requirements for an operational algorithm are formulated given the spatially, temporally, and spectrally varying factors that influence the image characteristics and the science requirements of various applications. Several computational techniques are tested and their performance evaluated using a multisensor test data set assembled from the Landsat TM, Seasat, SIR-B, TIMS, and SPOT sensors. -from Author
