10 research outputs found

    The Nanostructure of Myoendothelial Junctions Contributes to Signal Rectification between Endothelial and Vascular Smooth Muscle Cells

    Get PDF
    Micro-anatomical structures in tissues have potential physiological effects. In arteries and arterioles smooth muscle cells and endothelial cells are separated by the internal elastic lamina, but the two cell layers often make contact through micro protrusions called myoendothelial junctions. Cross talk between the two cell layers is important in regulating blood pressure and flow. We have used a spatiotemporal mathematical model to investigate how the myoendothelial junctions affect the information flow between the two cell layers. The geometry of the model mimics the structure of the two cell types and the myoendothelial junction. The model is implemented as a 2D axi-symmetrical model and solved using the finite element method. We have simulated diffusion of Ca2+ and IP3 between the two cell types and we show that the micro-anatomical structure of the myoendothelial junction in itself may rectify a signal between the two cell layers. The rectification is caused by the asymmetrical structure of the myoendothelial junction. Because the head of the myoendothelial junction is separated from the cell it is attached to by a narrow neck region, a signal generated in the neighboring cell can easily drive a concentration change in the head of the myoendothelial protrusion. Subsequently the signal can be amplified in the head, and activate the entire cell. In contrast, a signal in the cell from which the myoendothelial junction originates will be attenuated and delayed in the neck region as it travels into the head of the myoendothelial junction and the neighboring cell

    Optical methods for the measurement and manipulation of cytosolic calcium signals in neutrophils

    No full text
    The measurement and manipulation of cytosolic free Ca2+ of neutrophils is crucial for investigating the mechanisms within living neutrophils which generate Ca2+ signals and the cellular responses triggered by them. Optical methods for this are the most applicable for neutrophils, and are discussed here, especially the use of fluorescent indicators of Ca2+ and photoactivation of reagents involved in Ca2+ signaling. Both of these synthetic agents can be loaded into neutrophils as lipid-soluble esters or can be microinjected into the cell. In this chapter, we outline some of the techniques that have been used to monitor, visualize, and manipulate Ca2+ in neutrophils

    Contribution of K+ channels to endothelium-derived hypolarization-induced renal vasodilation in rats in vivo and in vitro

    No full text
    We investigated the mechanisms behind the endothelial-derived hyperpolarization (EDH)-induced renal vasodilation in vivo and in vitro in rats. We assessed the role of Ca2+-activated K+ channels and whether K+ released from the endothelial cells activates inward rectifier K+ (Kir) channels and/or the Na+/K+-ATPase. Also, involvement of renal myoendothelial gap junctions was evaluated in vitro. Isometric tension in rat renal interlobar arteries was measured using a wire myograph. Renal blood flow was measured in isoflurane anesthetized rats. The EDH response was defined as the ACh-induced vasodilation assessed after inhibition of nitric oxide synthase and cyclooxygenase using L-NAME and indomethacin, respectively. After inhibition of small conductance Ca2+-activated K+ channels (SKCa) and intermediate conductance Ca2+-activated K+ channels (IKCa) (by apamin and TRAM-34, respectively), the EDH response in vitro was strongly attenuated whereas the EDH response in vivo was not significantly reduced. Inhibition of Kir channels and Na+/K+-ATPases (by ouabain and Ba2+, respectively) significantly attenuated renal vasorelaxation in vitro but did not affect the response in vivo. Inhibition of gap junctions in vitro using carbenoxolone or 18α-glycyrrhetinic acid significantly reduced the endothelial-derived hyperpolarization-induced vasorelaxation. We conclude that SKCa and IKCa channels are important for EDH-induced renal vasorelaxation in vitro. Activation of Kir channels and Na+/K+-ATPases plays a significant role in the renal vascular EDH response in vitro but not in vivo. The renal EDH response in vivo is complex and may consist of several overlapping mechanisms some of which remain obscure

    Topographical interrogation of the living cell surface reveals its role in rapid cell shape changes during phagocytosis and spreading

    Get PDF
    Dramatic and rapid changes in cell shape are perhaps best exemplified by phagocytes, such as neutrophils. These cells complete the processes of spreading onto surfaces, and phagocytosis within 100 s of stimulation. Although these cell shape changes are accompanied by an apparent large increase in cell surface area, the nature of the membrane “reservoir” for the additional area is unclear. One proposal is that the wrinkled cell surface topography (which forms micro-ridges on the neutrophil surface) provides the resource for neutrophils to expand their available surface area. However, it has been problematic to test this proposal in living cells because these surface structures are sub-light microscopic. In this paper, we report the development of a novel approach, a variant of FRAP (fluorescent recovery after photo-bleaching) modified to interrogate the diffusion path-lengths of membrane associated molecules. This approach provides clear evidence that the cell surface topography changes dramatically during neutrophil shape change (both locally and globally) and can be triggered by elevating cytosolic Ca2+

    Predictors of engagement with remote sensing technologies for symptom measurement in Major Depressive Disorder

    No full text
    Background: Remote sensing for the measurement and management of long-term conditions such as Major Depressive Disorder (MDD) is becoming more prevalent. User-engagement is essential to yield any benefits. We tested three hypotheses examining associations between clinical characteristics, perceptions of remote sensing, and objective user engagement metrics. / Methods: The Remote Assessment of Disease and Relapse – Major Depressive Disorder (RADAR-MDD) study is a multicentre longitudinal observational cohort study in people with recurrent MDD. Participants wore a FitBit and completed app-based assessments every two weeks for a median of 18 months. Multivariable random effects regression models pooling data across timepoints were used to examine associations between variables. / Results: A total of 547 participants (87.8% of the total sample) were included in the current analysis. Higher levels of anxiety were associated with lower levels of perceived technology ease of use; increased functional disability was associated with small differences in perceptions of technology usefulness and usability. Participants who reported higher system ease of use, usefulness, and acceptability subsequently completed more app-based questionnaires and tended to wear their FitBit activity tracker for longer. All effect sizes were small and unlikely to be of practical significance. / Limitations: Symptoms of depression, anxiety, functional disability, and perceptions of system usability are measured at the same time. These therefore represent cross-sectional associations rather than predictions of future perceptions. / Conclusions: These findings suggest that perceived usability and actual use of remote measurement technologies in people with MDD are robust across differences in severity of depression, anxiety, and functional impairment

    Calpain activation by Ca2+ and its role in phagocytosis

    No full text
    Although the cytosolic Ca2+ signalling event in phagocytosis is well established, and the mechanism for generating such signals also understood, the target for the Ca2+ signal and how this relates to the phagocytic outcome is less clear. In this chapter, we present the evidence for a role of the Ca2+ activated protease, calpain, in phagocytosis. The abundant evidence for Ca2+ changes and calpain activation during cell shape changes is extended to include the specific cell shape change which accompanies phagocytosis. The discussion therefore includes a brief description of the domain structure of calpain and their functions. Also the mechanism by which calpain activation is limited at the cell periphery subdomains, and how this would allow phagocytic pseudopodia to form locally

    Evidence for a non-antioxidant, dose-dependent role of alpha-lipoic acid in caspase-3 and ERK2 activation in endothelial cells

    No full text
    Endothelial cell apoptosis contributes to atherosclerosis and may be exacerbated by oxidative stress. Results from clinical trials using antioxidant supplementation are equivocal and could be enhanced by antioxidants with additional non-antioxidant properties such as a-lipoic acid and alpha-tocopherol. The aim of this study was to investigate the effects of these antioxidants on cytoprotective pathways and endothelial apoptosis. Endothelial cells were incubated with alpha-lipoic acid and alpha-tocopherol, alone or in combination, prior to incubation with H2O2 or staurosporine. alpha-lipoic acid pre-treatment alone increased caspase-3 activity in a dose-dependent manner. Both H2O2 and staurosporine increased DNA fragmentation and caspase-3 activity and pre-treatment of cells with a-lipoic acid and/or a-tocopherol failed to prevent stress-induced apoptosis. Neither antioxidant treatments nor apoptotic inducers alone altered expressions of BcI-2, Bax, HSP70 or pERK1/2 or pJNK. alpha-lipoic decreased pERK2 in staurosporine-treated cells in a dose-dependent manner. These findings indicate that pre-incubation with alpha-lipoic acid and alpha-tocopherol, alone or in combination, does not protect against oxidative- or non-oxidative-induced apoptosis in endothelial cells. Moreover, we have demonstrated a non-antioxidant, dose-dependent role of alpha-lipoic acid in caspase-3 and ERK2 activation. These data provide an insight and indicate caution in the use of high doses of alpha-lipoic acid as an antioxidant
    corecore