26 research outputs found
Teleconsultation service to improve healthcare in rural areas: acceptance, organizational impact and appropriateness
Background: Nowadays, new organisational strategies should be indentified to improve primary
care and its link with secondary care in terms of efficacy and timeliness of interventions thus
preventing unnecessary hospital accesses and costs saving for the health system. The purpose of
this study is to assess the effects of the use of teleconsultation by general practitioners in rural
areas.
Methods: General practitioners were provided with a teleconsultation service from 2006 to 2008
to obtain a second opinion for cardiac, dermatological and diabetic problems. Access, acceptance,
organisational impact, effectiveness and economics data were collected. Clinical and access data
were systematically entered in a database while acceptance and organisational data were evaluated
through ad hoc questionnaires.
Results: There were 957 teleconsultation contacts which resulted in access to health care services
for 812 symptomatic patients living in 30 rural communities. Through the teleconsultation service,
48 general practitioners improved the appropriateness of primary care and the integration with
secondary care. In fact, the level of concordance between intentions and consultations for cardiac
problems was equal to 9%, in 86% of the cases the service entailed a saving of resources and in 5%
of the cases, it improved the timeliness. 95% of the GPs considered the overall quality positively.
For a future routine use of this service, trust in specialists, duration and workload of
teleconsultations and reimbursement should be taken into account.
Conclusions: Managerial and policy implications emerged mainly related to the support to GPs in
the provision of high quality primary care and decision-making processes in promoting similar
services
Contexts of Twinship: Discourses and Generation
Much of the research relating to twins is concentrated in biology and psychology where twins have been used as methodological tools for testing for the relative influences of nature and nurture. This chapter demonstrates a sociological approach to the study of twinship by situating twinship within a social and cultural context. It examines how discourses of twinship, childhood and ‘growing up’ bring meaning to and frame our understanding of twinship. It also draws attention to the significance of family life, especially family relationships and generation in contextualising twins’ experiences and variously facilitating and inhibiting their agency
A Dominant X-Linked QTL Regulating Pubertal Timing in Mice Found by Whole Genome Scanning and Modified Interval-Specific Congenic Strain Analysis
BACKGROUND: Pubertal timing in mammals is triggered by reactivation of the hypothalamic-pituitary-gonadal (HPG) axis and modulated by both genetic and environmental factors. Strain-dependent differences in vaginal opening among inbred mouse strains suggest that genetic background contribute significantly to the puberty timing, although the exact mechanism remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: We performed a genome-wide scanning for linkage in reciprocal crosses between two strains, C3H/HeJ (C3H) and C57BL6/J (B6), which differed significantly in the pubertal timing. Vaginal opening (VO) was used to characterize pubertal timing in female mice, and the age at VO of all female mice (two parental strains, F1 and F2 progeny) was recorded. A genome-wide search was performed in 260 phenotypically extreme F2 mice out of 464 female progeny of the F1 intercrosses to identify quantitative trait loci (QTLs) controlling this trait. A QTL significantly associated was mapped to the DXMit166 marker (15.5 cM, LOD = 3.86, p<0.01) in the reciprocal cross population (C3HB6F2). This QTL contributed 2.1 days to the timing of VO, which accounted for 32.31% of the difference between the original strains. Further study showed that the QTL was B6-dominant and explained 10.5% of variation to this trait with a power of 99.4% at an alpha level of 0.05.The location of the significant ChrX QTL found by genome scanning was then fine-mapped to a region of approximately 2.5 cM between marker DXMit68 and rs29053133 by generating and phenotyping a panel of 10 modified interval-specific congenic strains (mISCSs). CONCLUSIONS/SIGNIFICANCE: Such findings in our study lay a foundation for positional cloning of genes regulating the timing of puberty, and also reveal the fact that chromosome X (the sex chromosome) does carry gene(s) which take part in the regulative pathway of the pubertal timing in mice
Evidence for rangewide panmixia despite multiple barriers to dispersal in a marine mussel
Oceanographic features shape the distributional and genetic patterns of marine species by interrupting or promoting connections among populations. Although general patterns commonly arise, distributional ranges and genetic structure are species-specific and do not always comply with the expected trends. By applying a multimarker genetic approach combined with Lagrangian particle simulations (LPS) we tested the hypothesis that oceanographic features along northeastern Atlantic and Mediterranean shores influence dispersal potential and genetic structure of the intertidal mussel Perna perna. Additionally, by performing environmental niche modelling we assessed the potential and realized niche of P. perna along its entire native distributional range and the environmental factors that best explain its realized distribution. Perna perna showed evidence of panmixia across > 4,000 km despite several oceanographic breaking points detected by LPS. This is probably the result of a combination of life history traits, continuous habitat availability and stepping-stone dynamics. Moreover, the niche modelling framework depicted minimum sea surface temperatures (SST) as the major factor shaping P. perna distributional range limits along its native areas. Forthcoming warming SST is expected to further change these limits and allow the species to expand its range polewards though this may be accompanied by retreat from warmer areas.Fundacao para a Ciencia e Tecnologia (FCT-MEC, Portugal) [UID/Multi/04326/2013, IF/01413/2014/CP1217/CT0004]; South African Research Chairs Initiative (SARChI) of the Department of Science and Technology; National Research Foundation; South African National Research Foundation (NRF); Portuguese Fundacao para a Ciencia e Tecnologia (FCT) [SFRH/BPD/85040/2012, SFRH/BPD/111003/2015]info:eu-repo/semantics/publishedVersio
Dramatic niche shifts and morphological change in two insular bird species
Colonizations of islands are often associated with rapid morphological divergence. We present two previously unrecognized cases of dramatic morphological change and niche shifts in connection with colonization of tropical forest-covered islands. These evolutionary changes have concealed the fact that the passerine birds madanga, Madanga ruficollis, from Buru, Indonesia, and São Tomé shorttail, Amaurocichla bocagii, from São Tomé, Gulf of Guinea, are forest-adapted members of the family Motacillidae (pipits and wagtails). We show that Madanga has diverged mainly in plumage, which may be the result of selection for improved camouflage in its new arboreal niche, while selection pressures for other morphological changes have probably been weak owing to preadaptations for the novel niche. By contrast, we suggest that Amaurocichla's niche change has led to divergence in both structure and plumage
Brain-Based Indices for User System Symbiosis
The future generation user system interfaces need to be user-centric which goes beyond user-friendly and includes understanding and anticipating user intentions. We introduce the concept of operator models, their role in implementing user-system symbiosis, and the usefulness of brain-based indices on for instance effort, vigilance, workload and engagement to continuously update the operator model. Currently, the best understood parameters in the operator model are vigilance and workload. An overview of the currently employed brain-based indices showed that indices for the lower workload levels (often based on power in the alpha and theta band of the EEG) are quite reliable, but good indices for the higher workload spectrum are still missing. We argue that this is due to the complex situation when performance stays optimal despite increasing task demands because the operator invests more effort. We introduce a model based on perceptual control theory that provides insight into what happens in this situations and how this affects physiological and brain-based indices.We argue that a symbiotic system only needs to intervene directly in situations of under and overload, but not in a high workload situation. Here, the system must leave the option to adapt on a short notice exclusively to the operator. The system should lower task demands only in the long run to reduce the risk of fatigue or long recovery times. We end by indicating future operator model parameters that can be reflected by brain-based indices