288 research outputs found
Recommended from our members
Experimental and statistical reevaluation provides no evidence for Drosophila courtship song rhythms
From 1980 to 1992, a series of influential papers reported on the discovery, genetics, and evolution of a periodic cycling of the interval between Drosophila male courtship song pulses. The molecular mechanisms underlying this periodicity were never described. To reinitiate investigation of this phenomenon, we previously performed automated segmentation of songs but failed to detect the proposed rhythm [Arthur BJ, et al. (2013) BMC Biol 11:11; Stern DL (2014) BMC Biol 12:38]. Kyriacou et al. [Kyriacou CP, et al. (2017) Proc Natl Acad Sci USA 114:1970–1975] report that we failed to detect song rhythms because (i) our flies did not sing enough and (ii) our segmenter did not identify many of the song pulses. Kyriacou et al. manually annotated a subset of our recordings and reported that two strains displayed rhythms with genotype-specific periodicity, in agreement with their original reports. We cannot replicate this finding and show that the manually annotated data, the original automatically segmented data, and a new dataset provide no evidence for either the existence of song rhythms or song periodicity differences between genotypes. Furthermore, we have reexamined our methods and analysis and find that our automated segmentation method was not biased to prevent detection of putative song periodicity. We conclude that there is no evidence for the existence of Drosophila courtship song rhythms
Multiscale photosynthetic exciton transfer
Photosynthetic light harvesting provides a natural blueprint for
bioengineered and biomimetic solar energy and light detection technologies.
Recent evidence suggests some individual light harvesting protein complexes
(LHCs) and LHC subunits efficiently transfer excitons towards chemical reaction
centers (RCs) via an interplay between excitonic quantum coherence, resonant
protein vibrations, and thermal decoherence. The role of coherence in vivo is
unclear however, where excitons are transferred through multi-LHC/RC aggregates
over distances typically large compared with intra-LHC scales. Here we assess
the possibility of long-range coherent transfer in a simple chromophore network
with disordered site and transfer coupling energies. Through renormalization we
find that, surprisingly, decoherence is diminished at larger scales, and
long-range coherence is facilitated by chromophoric clustering. Conversely,
static disorder in the site energies grows with length scale, forcing
localization. Our results suggest sustained coherent exciton transfer may be
possible over distances large compared with nearest-neighbour (n-n) chromophore
separations, at physiological temperatures, in a clustered network with small
static disorder. This may support findings suggesting long-range coherence in
algal chloroplasts, and provides a framework for engineering large chromophore
or quantum dot high-temperature exciton transfer networks.Comment: 9 pages, 6 figures. A significantly updated version is now published
online by Nature Physics (2012
International journalism and the emergence of transnational publics: between cosmopolitan norms, the affirmation of identity and market forces
Much has been written about transnational public spheres, though our understanding of their shape and nature remains limited. Drawing on three alternative conceptions of newswork as public communication, this article explores the role of international journalists in shaping transnational publics. Based on a series of original interviews, it asks how journalists are oriented in their newswork (e.g. are they cosmopolitan or parochial in their orientation) and how they ‘imagine’ the public. It finds that interviewees imagine a polycentric transnational public and variously frame their work as giving voice to those affected by an issue (imagining the public as a cosmopolitan community of fate), performing and reaffirming a particular kind of identity and belonging (imagining the public as a nation) or pursuing audiences wherever they may be (imagining the public as the de facto audience)
If players are sparse social dilemmas are too: Importance of percolation for evolution of cooperation
Spatial reciprocity is a well known tour de force of cooperation promotion. A
thorough understanding of the effects of different population densities is
therefore crucial. Here we study the evolution of cooperation in social
dilemmas on different interaction graphs with a certain fraction of vacant
nodes. We find that sparsity may favor the resolution of social dilemmas,
especially if the population density is close to the percolation threshold of
the underlying graph. Regardless of the type of the governing social dilemma as
well as particularities of the interaction graph, we show that under pairwise
imitation the percolation threshold is a universal indicator of how dense the
occupancy ought to be for cooperation to be optimally promoted. We also
demonstrate that myopic updating, due to the lack of efficient spread of
information via imitation, renders the reported mechanism dysfunctional, which
in turn further strengthens its foundations.Comment: 6 two-column pages, 5 figures; accepted for publication in Scientific
Reports [related work available at http://arxiv.org/abs/1205.0541
Dissemination in time and space in presymptomatic granulin mutation carriers: a GENFI spatial chronnectome study
The presymptomatic brain changes of granulin (GRN) disease, preceding by years frontotemporal dementia, has not been fully characterized. New approaches focus on the spatial chronnectome can capture both spatial network configurations and their dynamic changes over time. To investigate the spatial dynamics in 141 presymptomatic GRN mutation carriers and 282 noncarriers from the Genetic Frontotemporal dementia research Initiative cohort. We considered time-varying patterns of the default mode network, the language network, and the salience network, each summarized into 4 distinct recurring spatial configurations. Dwell time (DT) (the time each individual spends in each spatial state of each network), fractional occupacy (FO) (the total percentage of time spent by each individual in a state of a specific network) and total transition number (the total number of transitions performed by each individual in a specifict state) were considered. Correlations between DT, FO, and transition number and estimated years from expected symptom onset (EYO) and clinical performances were assessed. Presymptomatic GRN mutation carriers spent significantly more time in those spatial states characterised by greater activation of the insula and the parietal cortices, as compared to noncarriers (p < 0.05, FDR-corrected). A significant correlation between DT and FO of these spatial states and EYO was found, the longer the time spent in the spatial states, the closer the EYO. DT and FO significantly correlated with performances at tests tapping processing speed, with worse scores associated with increased spatial states’ DT. Our results demonstrated that presymptomatic GRN disease presents a complex dynamic reorganization of brain connectivity. Change in both the spatial and temporal aspects of brain network connectivity could provide a unique glimpse into brain function and potentially allowing a more sophisticated evaluation of the earliest disease changes and the understanding of possible mechanisms in GRN disease
The Hippocampus Is Coupled with the Default Network during Memory Retrieval but Not during Memory Encoding
The brain's default mode network (DMN) is activated during internally-oriented tasks and shows strong coherence in spontaneous rest activity. Despite a surge of recent interest, the functional role of the DMN remains poorly understood. Interestingly, the DMN activates during retrieval of past events but deactivates during encoding of novel events into memory. One hypothesis is that these opposing effects reflect a difference between attentional orienting towards internal events, such as retrieved memories, vs. external events, such as to-be-encoded stimuli. Another hypothesis is that hippocampal regions are coupled with the DMN during retrieval but decoupled from the DMN during encoding. The present fMRI study investigated these two hypotheses by combining a resting-state coherence analysis with a task that measured the encoding and retrieval of both internally-generated and externally-presented events. Results revealed that the main DMN regions were activated during retrieval but deactivated during encoding. Counter to the internal orienting hypothesis, this pattern was not modulated by whether memory events were internal or external. Consistent with the hippocampal coupling hypothesis, the hippocampus behaved like other DMN regions during retrieval but not during encoding. Taken together, our findings clarify the relationship between the DMN and the neural correlates of memory retrieval and encoding
RosettaRemodel: A Generalized Framework for Flexible Backbone Protein Design
We describe RosettaRemodel, a generalized framework for flexible protein design that provides a versatile and convenient interface to the Rosetta modeling suite. RosettaRemodel employs a unified interface, called a blueprint, which allows detailed control over many aspects of flexible backbone protein design calculations. RosettaRemodel allows the construction and elaboration of customized protocols for a wide range of design problems ranging from loop insertion and deletion, disulfide engineering, domain assembly, loop remodeling, motif grafting, symmetrical units, to de novo structure modeling
Temporal dynamics of selective attention and conflict resolution during cross-dimensional go-nogo decisions
<p>Abstract</p> <p>Background</p> <p>Decision-making is a fundamental capacity which is crucial to many higher-order psychological functions. We recorded event-related potentials (ERPs) during a visual target-identification task that required go-nogo choices. Targets were identified on the basis of cross-dimensional conjunctions of particular colors and forms. Color discriminability was manipulated in three conditions to determine the effects of color distinctiveness on component processes of decision-making.</p> <p>Results</p> <p>Target identification was accompanied by the emergence of prefrontal P2a and P3b. Selection negativity (SN) revealed that target-compatible features captured attention more than target-incompatible features, suggesting that intra-dimensional attentional capture was goal-contingent. No changes of cross-dimensional selection priorities were measurable when color discriminability was altered. Peak latencies of the color-related SN provided a chronometric measure of the duration of attention-related neural processing. ERPs recorded over the frontocentral scalp (N2c, P3a) revealed that color-overlap distractors, more than form-overlap distractors, required additional late selection. The need for additional response selection induced by color-overlap distractors was severely reduced when color discriminability decreased.</p> <p>Conclusion</p> <p>We propose a simple model of cross-dimensional perceptual decision-making. The temporal synchrony of separate color-related and form-related choices determines whether or not distractor processing includes post-perceptual stages. ERP measures contribute to a comprehensive explanation of the temporal dynamics of component processes of perceptual decision-making.</p
- …