253 research outputs found

    The Influence of Physiological Status on age Prediction of Anopheles Arabiensis Using Near Infra-red spectroscopy

    Get PDF
    Determining the age of malaria vectors is essential for evaluating the impact of interventions that reduce the survival of wild mosquito populations and for estimating changes in vectorial capacity. Near infra-red spectroscopy (NIRS) is a simple and non-destructive method that has been used to determine the age and species of Anopheles gambiae s.l. by analyzing differences in absorption spectra. The spectra are affected by biochemical changes that occur during the life of a mosquito and could be influenced by senescence and also the life history of the mosquito, i.e., mating, blood feeding and egg-laying events. To better understand these changes, we evaluated the influence of mosquito physiological status on NIR energy absorption spectra. Mosquitoes were kept in individual cups to permit record keeping of each individual insect’s life history. Mosquitoes of the same chronological age, but at different physiological stages, were scanned and compared using cross-validations. We observed a slight trend within some physiological stages that suggest older insects tend to be predicted as being physiologically more mature. It was advantageous to include mosquitoes of different chronological ages and physiological stages in calibrations, as it increases the robustness of the model resulting in better age predictions. Progression through different physiological statuses of An. arabiensis influences the chronological age prediction by the NIRS. Entomologists that wish to use NIR technology to predict the age of field-caught An. gambiae s.l from their study area should use a calibration developed from their field strain using mosquitoes of diverse chronological ages and physiological stages to increase the robustness and accuracy of the predictions.\u

    Forty years studying British politics : the decline of Anglo-America

    Get PDF
    The still present belief some 40 years ago that British politics was both exceptional and superior has been replaced by more theoretically sophisticated analyses based on a wider and more rigorously deployed range of research techniques, although historical analysis appropriately remains important. The American influence on the study of British politics has declined, but the European Union dimension has not been fully integrated. The study of interest groups has been in some respects a fading paradigm, but important questions related to democratic health have still to be addressed. Public administration has been supplanted by public policy, but economic policy remains under-studied. A key challenge for the future is the study of the management of expectations

    Estimating radiation effective doses from whole body computed tomography scans based on U.S. soldier patient height and weight

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study is to explore how a patient's height and weight can be used to predict the effective dose to a reference phantom with similar height and weight from a chest abdomen pelvis computed tomography scan when machine-based parameters are unknown. Since machine-based scanning parameters can be misplaced or lost, a predictive model will enable the medical professional to quantify a patient's cumulative radiation dose.</p> <p>Methods</p> <p>One hundred mathematical phantoms of varying heights and weights were defined within an x-ray Monte Carlo based software code in order to calculate organ absorbed doses and effective doses from a chest abdomen pelvis scan. Regression analysis was used to develop an effective dose predictive model. The regression model was experimentally verified using anthropomorphic phantoms and validated against a real patient population.</p> <p>Results</p> <p>Estimates of the effective doses as calculated by the predictive model were within 10% of the estimates of the effective doses using experimentally measured absorbed doses within the anthropomorphic phantoms. Comparisons of the patient population effective doses show that the predictive model is within 33% of current methods of estimating effective dose using machine-based parameters.</p> <p>Conclusions</p> <p>A patient's height and weight can be used to estimate the effective dose from a chest abdomen pelvis computed tomography scan. The presented predictive model can be used interchangeably with current effective dose estimating techniques that rely on computed tomography machine-based techniques.</p

    Alarm Pheromones and Chemical Communication in Nymphs of the Tropical Bed Bug Cimex hemipterus (Hemiptera: Cimicidae)

    Get PDF
    The recent resurge of bed bug infestations (Cimex spp.; Cimicidae) and their resistance to commonly used pesticides calls for alternative methods of control. Pheromones play an important role in environmentally sustainable methods for the management of many pest insects and may therefore be applicable for the control of bed bugs. The tropical bed bug, Cimex hemipterus, is a temporary ectoparasite on humans and causes severe discomfort. Compared to the common bed bug, Cimex lectularius, little is known about the chemical signalling and pheromone-based behaviour of the tropical species. Here, we show that the antennal morphology and volatile emission of C. hemipterus closely resembles those of C. lectularius and we test their behavioural responses to conspecific odour emissions. Two major volatiles are emitted by male, female and nymph C. hemipterus under stress, (E)-2-hexenal and (E)-2-octenal. Notably, nymph emissions show contrasting ratios of these compounds to adults and are further characterized by the addition of 4-oxo-(E)-2-hexenal and 4-oxo-(E)-2-octenal. The discovery of this nymph pheromone in C. hemipterus is potentially the cause of a repellent effect observed in the bio-tests, where nymph odours induce a significantly stronger repellent reaction in conspecifics than adult odours. Our results suggest that pheromone-based pest control methods developed for C. lectularius could be applicable to C. hemipterus, with the unique nymph blend showing promising practical properties

    Genetic Ancestry-Smoking Interactions and Lung Function in African Americans: A Cohort Study

    Get PDF
    Background: Smoking tobacco reduces lung function. African Americans have both lower lung function and decreased metabolism of tobacco smoke compared to European Americans. African ancestry is also associated with lower pulmonary function in African Americans. We aimed to determine whether African ancestry modifies the association between smoking and lung function and its rate of decline in African Americans. Methodology/Principal Findings: We evaluated a prospective ongoing cohort of 1,281 African Americans participating in the Health, Aging, and Body Composition (Health ABC) Study initiated in 1997. We also examined an ongoing prospective cohort initiated in 1985 of 1,223 African Americans in the Coronary Artery Disease in Young Adults (CARDIA) Study. Pulmonary function and tobacco smoking exposure were measured at baseline and repeatedly over the follow-up period. Individual genetic ancestry proportions were estimated using ancestry informative markers selected to distinguish European and West African ancestry. African Americans with a high proportion of African ancestry had lower baseline forced expiratory volume in one second (FEV1) per pack-year of smoking (-5.7 ml FEV1/ smoking pack-year) compared with smokers with lower African ancestry (-4.6 ml in FEV1/ smoking pack-year) (interaction P value = 0.17). Longitudinal analyses revealed a suggestive interaction between smoking, and African ancestry on the rate of FEV1 decline in Health ABC and independently replicated in CARDIA. Conclusions/Significance: African American individuals with a high proportion of African ancestry are at greater risk for losing lung function while smoking. © 2012 Aldrich et al

    Roles of the Amino Terminal Region and Repeat Region of the Plasmodium berghei Circumsporozoite Protein in Parasite Infectivity

    Get PDF
    The circumsporozoite protein (CSP) plays a key role in malaria sporozoite infection of both mosquito salivary glands and the vertebrate host. The conserved Regions I and II have been well studied but little is known about the immunogenic central repeat region and the N-terminal region of the protein. Rodent malaria Plasmodium berghei parasites, in which the endogenous CS gene has been replaced with the avian Plasmodium gallinaceum CS (PgCS) sequence, develop normally in the A. stephensi mosquito midgut but the sporozoites are not infectious. We therefore generated P. berghei transgenic parasites carrying the PgCS gene, in which the repeat region was replaced with the homologous region of P. berghei CS (PbCS). A further line, in which both the N-terminal region and repeat region were replaced with the homologous regions of PbCS, was also generated. Introduction of the PbCS repeat region alone, into the PgCS gene, did not rescue sporozoite species-specific infectivity. However, the introduction of both the PbCS repeat region and the N-terminal region into the PgCS gene completely rescued infectivity, in both the mosquito vector and the mammalian host. Immunofluorescence experiments and western blot analysis revealed correct localization and proteolytic processing of CSP in the chimeric parasites. The results demonstrate, in vivo, that the repeat region of P. berghei CSP, alone, is unable to mediate sporozoite infectivity in either the mosquito or the mammalian host, but suggest an important role for the N-terminal region in sporozoite host cell invasion

    Affective processes as network hubs

    Get PDF
    The practical problems of designing and coding a web-based flight simulator for teachers has led to a ‘three-tier plus environment’ model (COVE model) for a software agent’s cognition (C), psychologicsal (O), physical (V) processes and responses to tasks and interpersonal relationships within a learning environment (E). The purpose of this article is to introduce how some of the COVE model layers represent preconscious processing hubs in an AI human-agent’s representation of learning in a serious game, and how an application of the Five Factor Model of psychology in the O layer determines the scope of dimensions for a practical computational model of affective processes. The article illustrates the model with the classroom-learning context of the simSchool application (www.simschool.org); presents details of the COVE model of an agent’s reactions to academic tasks; discusses the theoretical foundations; and outlines the research-based real world impacts from external validation studies as well as new testable hypotheses of simSchool
    corecore