24 research outputs found

    Improved Depth Map Estimation from Stereo Images based on Hybrid Method

    Get PDF
    In this paper, a stereo matching algorithm based on image segments is presented. We propose the hybrid segmentation algorithm that is based on a combination of the Belief Propagation and Mean Shift algorithms with aim to refine the disparity and depth map by using a stereo pair of images. This algorithm utilizes image filtering and modified SAD (Sum of Absolute Differences) stereo matching method. Firstly, a color based segmentation method is applied for segmenting the left image of the input stereo pair (reference image) into regions. The aim of the segmentation is to simplify representation of the image into the form that is easier to analyze and is able to locate objects in images. Secondly, results of the segmentation are used as an input of the local window-based matching method to determine the disparity estimate of each image pixel. The obtained experimental results demonstrate that the final depth map can be obtained by application of segment disparities to the original images. Experimental results with the stereo testing images show that our proposed Hybrid algorithm HSAD gives a good performance

    Iterative Unsupervised GMM Training for Speaker Indexing

    Get PDF
    The paper addresses a novel algorithm for speaker searching and indexation based on unsupervised GMM training. The proposed method doesn\'t require a predefined set of generic background models, and the GMM speaker models are trained only from test samples. The constrain of the method is that the number of the speakers has to be known in advance. The results of initial experiments show that the proposed training method enables to create precise GMM speaker models from only a small amount of training data

    A Novel Approach to Face Recognition using Image Segmentation based on SPCA-KNN Method

    Get PDF
    In this paper we propose a novel method for face recognition using hybrid SPCA-KNN (SIFT-PCA-KNN) approach. The proposed method consists of three parts. The first part is based on preprocessing face images using Graph Based algorithm and SIFT (Scale Invariant Feature Transform) descriptor. Graph Based topology is used for matching two face images. In the second part eigen values and eigen vectors are extracted from each input face images. The goal is to extract the important information from the face data, to represent it as a set of new orthogonal variables called principal components. In the final part a nearest neighbor classifier is designed for classifying the face images based on the SPCA-KNN algorithm. The algorithm has been tested on 100 different subjects (15 images for each class). The experimental result shows that the proposed method has a positive effect on overall face recognition performance and outperforms other examined methods

    COST292 experimental framework for TRECVID 2008

    Get PDF
    In this paper, we give an overview of the four tasks submitted to TRECVID 2008 by COST292. The high-level feature extraction framework comprises four systems. The first system transforms a set of low-level descriptors into the semantic space using Latent Semantic Analysis and utilises neural networks for feature detection. The second system uses a multi-modal classifier based on SVMs and several descriptors. The third system uses three image classifiers based on ant colony optimisation, particle swarm optimisation and a multi-objective learning algorithm. The fourth system uses a Gaussian model for singing detection and a person detection algorithm. The search task is based on an interactive retrieval application combining retrieval functionalities in various modalities with a user interface supporting automatic and interactive search over all queries submitted. The rushes task submission is based on a spectral clustering approach for removing similar scenes based on eigenvalues of frame similarity matrix and and a redundancy removal strategy which depends on semantic features extraction such as camera motion and faces. Finally, the submission to the copy detection task is conducted by two different systems. The first system consists of a video module and an audio module. The second system is based on mid-level features that are related to the temporal structure of videos

    The COST292 experimental framework for TRECVID 2007

    Get PDF
    In this paper, we give an overview of the four tasks submitted to TRECVID 2007 by COST292. In shot boundary (SB) detection task, four SB detectors have been developed and the results are merged using two merging algorithms. The framework developed for the high-level feature extraction task comprises four systems. The first system transforms a set of low-level descriptors into the semantic space using Latent Semantic Analysis and utilises neural networks for feature detection. The second system uses a Bayesian classifier trained with a “bag of subregions”. The third system uses a multi-modal classifier based on SVMs and several descriptors. The fourth system uses two image classifiers based on ant colony optimisation and particle swarm optimisation respectively. The system submitted to the search task is an interactive retrieval application combining retrieval functionalities in various modalities with a user interface supporting automatic and interactive search over all queries submitted. Finally, the rushes task submission is based on a video summarisation and browsing system comprising two different interest curve algorithms and three features

    COST292 experimental framework for TRECVID 2006

    Get PDF
    In this paper we give an overview of the four TRECVID tasks submitted by COST292, European network of institutions in the area of semantic multimodal analysis and retrieval of digital video media. Initially, we present shot boundary evaluation method based on results merged using a confidence measure. The two SB detectors user here are presented, one of the Technical University of Delft and one of the LaBRI, University of Bordeaux 1, followed by the description of the merging algorithm. The high-level feature extraction task comprises three separate systems. The first system, developed by the National Technical University of Athens (NTUA) utilises a set of MPEG-7 low-level descriptors and Latent Semantic Analysis to detect the features. The second system, developed by Bilkent University, uses a Bayesian classifier trained with a "bag of subregions" for each keyframe. The third system by the Middle East Technical University (METU) exploits textual information in the video using character recognition methodology. The system submitted to the search task is an interactive retrieval application developed by Queen Mary, University of London, University of Zilina and ITI from Thessaloniki, combining basic retrieval functionalities in various modalities (i.e. visual, audio, textual) with a user interface supporting the submission of queries using any combination of the available retrieval tools and the accumulation of relevant retrieval results over all queries submitted by a single user during a specified time interval. Finally, the rushes task submission comprises a video summarisation and browsing system specifically designed to intuitively and efficiently presents rushes material in video production environment. This system is a result of joint work of University of Bristol, Technical University of Delft and LaBRI, University of Bordeaux 1

    The COST292 experimental framework for TRECVID 2007

    Get PDF
    In this paper, we give an overview of the four tasks submitted to TRECVID 2007 by COST292. In shot boundary (SB) detection task, four SB detectors have been developed and the results are merged using two merging algorithms. The framework developed for the high-level feature extraction task comprises four systems. The first system transforms a set of low-level descriptors into the semantic space using Latent Semantic Analysis and utilises neural networks for feature detection. The second system uses a Bayesian classifier trained with a "bag of subregions". The third system uses a multi-modal classifier based on SVMs and several descriptors. The fourth system uses two image classifiers based on ant colony optimisation and particle swarm optimisation respectively. The system submitted to the search task is an interactive retrieval application combining retrieval functionalities in various modalities with a user interface supporting automatic and interactive search over all queries submitted. Finally, the rushes task submission is based on a video summarisation and browsing system comprising two different interest curve algorithms and three features

    COST292 experimental framework for TRECVID 2006

    No full text
    In this paper we give an overview of the four TRECVID tasks submitted by COST292, European network of institutions in the area of semantic multimodal analysis and retrieval of digital video media. Initially, we present shot boundary evaluation method based on results merged using a confidence measure. The two SB detectors user here are presented, one of the Technical University of Delft and one of the LaBRI, University of Bordeaux 1, followed by the description of the merging algorithm. The high-level feature extraction task comprises three separate systems. The first system, developed by the National Technical University of Athens (NTUA) utilises a set of MPEG-7 low-level descriptors and Latent Semantic Analysis to detect the features. The second system, developed by Bilkent University, uses a Bayesian classifier trained with a "bag of subregions" for each keyframe. The third system by the Middle East Technical University (METU) exploits textual information in the video using character recognition methodology. The system submitted to the search task is an interactive retrieval application developed by Queen Mary, University of London, University of Zilina and ITI from Thessaloniki, combining basic retrieval functionalities in various modalities (i.e. visual, audio, textual) with a user interface supporting the submission of queries using any combination of the available retrieval tools and the accumulation of relevant retrieval results over all queries submitted by a single user during a specified time interval. Finally, the rushes task submission comprises a video summarisation and browsing system specifically designed to intuitively and efficiently presents rushes material in video production environment. This system is a result of joint work of University of Bristol, Technical University of Delft and LaBRI, University of Bordeaux 1
    corecore