232 research outputs found
A Bayesian adaptive design for clinical trials in rare diseases
Development of treatments for rare diseases is challenging due to the limited number of patients available for participation. Learning about treatment effectiveness with a view to treat patients in the larger outside population, as in the traditional fixed randomised design, may not be a plausible goal. An alternative goal is to treat the patients within the trial as effectively as possible. Using the framework of finite-horizon Markov decision processes and dynamic programming (DP), a novel randomised response-adaptive design is proposed which maximises the total number of patient successes in the trial and penalises if a minimum number of patients are not recruited to each treatment arm. Several performance measures of the proposed design are evaluated and compared to alternative designs through extensive simulation studies using a recently published trial as motivation. For simplicity, a two-armed trial with binary endpoints and immediate responses is considered. Simulation results for the proposed design show that: (i) the percentage of patients allocated to the superior arm is much higher than in the traditional fixed randomised design; (ii) relative to the optimal DP design, the power is largely improved upon and (iii) it exhibits only a very small bias and mean squared error of the treatment effect estimator. Furthermore, this design is fully randomised which is an advantage from a practical point of view because it protects the trial against various sources of bias. As such, the proposed design addresses some of the key issues that have been suggested as preventing so-called bandit models from being implemented in clinical practice.We gratefully acknowledge the support of the EPSRC funded STOR-i Centre for Doctoral Training, Grant No. EP/H023151/1. SofĂa S. Villar is grateful to the Biometrika Trust for its research funding. This report is independent research arising in part from Professor Jaki’s Senior Research Fellowship (NIHR-SRF-2015-08-001) supported by the National Institute for Health Research
Point estimation for adaptive trial designs II: Practical considerations and guidance
In adaptive clinical trials, the conventional end-of-trial point estimate of a treatment effect is prone to bias, that is, a systematic tendency to deviate from its true value. As stated in recent FDA guidance on adaptive designs, it is desirable to report estimates of treatment effects that reduce or remove this bias. However, it may be unclear which of the available estimators are preferable, and their use remains rare in practice. This article is the second in a two-part series that studies the issue of bias in point estimation for adaptive trials. Part I provided a methodological review of approaches to remove or reduce the potential bias in point estimation for adaptive designs. In part II, we discuss how bias can affect standard estimators and assess the negative impact this can have. We review current practice for reporting point estimates and illustrate the computation of different estimators using a real adaptive trial example (including code), which we use as a basis for a simulation study. We show that while on average the values of these estimators can be similar, for a particular trial realization they can give noticeably different values for the estimated treatment effect. Finally, we propose guidelines for researchers around the choice of estimators and the reporting of estimates following an adaptive design. The issue of bias should be considered throughout the whole lifecycle of an adaptive design, with the estimation strategy prespecified in the statistical analysis plan. When available, unbiased or bias-reduced estimates are to be preferred
Ex-nihilo II: Examination Syllabi and the Sequencing of Cosmology Education
Cosmology education has become an integral part of modern physics courses.
Directed by National Curricula, major UK examination boards have developed
syllabi that contain explicit statements about the model of the Big Bang and
the strong observational evidence that supports it. This work examines the
similarities and differences in these specifications, addresses when cosmology
could be taught within a physics course, what should be included in this
teaching and in what sequence it should be taught at different levels.Comment: 9 pages. Accepted for publication in a special issue of Physics
Educatio
A novel statistical test for treatment differences in clinical trials using a response-adaptive forward-looking Gittins Index Rule.
The most common objective for response-adaptive clinical trials is to seek to ensure that patients within a trial have a high chance of receiving the best treatment available by altering the chance of allocation on the basis of accumulating data. Approaches that yield good patient benefit properties suffer from low power from a frequentist perspective when testing for a treatment difference at the end of the study due to the high imbalance in treatment allocations. In this work we develop an alternative pairwise test for treatment difference on the basis of allocation probabilities of the covariate-adjusted response-adaptive randomization with forward-looking Gittins Index (CARA-FLGI) Rule for binary responses. The performance of the novel test is evaluated in simulations for two-armed studies and then its applications to multiarmed studies are illustrated. The proposed test has markedly improved power over the traditional Fisher exact test when this class of nonmyopic response adaptation is used. We also find that the test's power is close to the power of a Fisher exact test under equal randomization
Instrumental variable estimation in semi-parametric additive hazards models
Instrumental variable methods allow unbiased estimation in the presence of unmeasured confounders when an appropriate instrumental variable is available. Two-stage least-squares and residual inclusion methods have recently been adapted to additive hazard models for censored survival data. The semi-parametric additive hazard model which can include time-independent and time-dependent covariate effects is particularly suited for the two-stage residual inclusion method, since it allows direct estimation of time-independent covariate effects without restricting the effect of the residual on the hazard. In this article we prove asymptotic normality of two-stage residual inclusion estimators of regression coefficients in a semi-parametric additive hazard model with time-independent and time-dependent covariate effects. We consider the cases of continuous and binary exposure. Estimation of the conditional survival function given observed covariates is discussed and a resampling scheme is proposed to obtain simultaneous confidence bands. The new methods are compared to existing ones in a simulation study and are applied to a real data set. The proposed methods perform favourably especially in cases with exposure-dependent censoring
Adding flexibility to clinical trial designs: an example-based guide to the practical use of adaptive designs.
Funder: Cancer Research UK; doi: http://dx.doi.org/10.13039/501100000289Adaptive designs for clinical trials permit alterations to a study in response to accumulating data in order to make trials more flexible, ethical, and efficient. These benefits are achieved while preserving the integrity and validity of the trial, through the pre-specification and proper adjustment for the possible alterations during the course of the trial. Despite much research in the statistical literature highlighting the potential advantages of adaptive designs over traditional fixed designs, the uptake of such methods in clinical research has been slow. One major reason for this is that different adaptations to trial designs, as well as their advantages and limitations, remain unfamiliar to large parts of the clinical community. The aim of this paper is to clarify where adaptive designs can be used to address specific questions of scientific interest; we introduce the main features of adaptive designs and commonly used terminology, highlighting their utility and pitfalls, and illustrate their use through case studies of adaptive trials ranging from early-phase dose escalation to confirmatory phase III studies
Correction: Medicines and Healthcare products Regulatory Agency’s “Consultation on proposals for legislative changes for clinical trials”: a response from the Trials Methodology Research Partnership Adaptive Designs Working Group, with a focus on data sharing
Following publication of the original article [1], we have been informed that affiliation for Graham Wheeler was incorrectly presented. The correct affiliation at the time of manuscript submission is Imperial Clinical Trials Unit, Imperial College London.
Originally published affiliation: “Present address: Statistics & Data Science Innovation Hub, GSK, Brentford, UK”.
The original article has been corrected
Medicines and Healthcare products Regulatory Agency’s “Consultation on proposals for legislative changes for clinical trials”: a response from the Trials Methodology Research Partnership Adaptive Designs Working Group, with a focus on data sharing
In the UK, the Medicines and Healthcare products Regulatory Agency consulted on proposals “to improve and strengthen the UK clinical trials legislation to help us make the UK the best place to research and develop safe and innovative medicines”. The purpose of the consultation was to help finalise the proposals and contribute to the drafting of secondary legislation. We discussed these proposals as members of the Trials Methodology Research Partnership Adaptive Designs Working Group, which is jointly funded by the Medical Research Council and the National Institute for Health and Care Research. Two topics arose frequently in the discussion: the emphasis on legislation, and the absence of questions on data sharing. It is our opinion that the proposals rely heavily on legislation to change practice. However, clinical trials are heterogeneous, and as a result some trials will struggle to comply with all of the proposed legislation. Furthermore, adaptive design clinical trials are even more heterogeneous than their non-adaptive counterparts, and face more challenges. Consequently, it is possible that increased legislation could have a greater negative impact on adaptive designs than non-adaptive designs. Overall, we are sceptical that the introduction of legislation will achieve the desired outcomes, with some exceptions. Meanwhile the topic of data sharing — making anonymised individual-level clinical trial data available to other investigators for further use — is entirely absent from the proposals and the consultation in general. However, as an aspect of the wider concept of open science and reproducible research, data sharing is an increasingly important aspect of clinical trials. The benefits of data sharing include faster innovation, improved surveillance of drug safety and effectiveness and decreasing participant exposure to unnecessary risk. There are already a number of UK-focused documents that discuss and encourage data sharing, for example, the Concordat on Open Research Data and the Medical Research Council’s Data Sharing Policy. We strongly suggest that data sharing should be the norm rather than the exception, and hope that the forthcoming proposals on clinical trials invite discussion on this important topic
- …