9,591 research outputs found
Transcendence: Exploring the Connections between Transgender/Gender Non-Conforming Identities and Experiences of Nature through Art
“Transcendence: Exploring the connections between transgender/gender non-conforming identities and experiences of nature through art” is the written portion of a creative thesis revolving around an immersive art installation and short film. Transcendence, the installation, was created to promote connection by exploring the overlap between transgender and gender non-conforming (GNC) experiences and experiences of nature. Part of this installation is a short film of interviews conducted with transgender and GNC individuals about nature, their gender experiences, and the transcendent nature of the two. The written thesis analyzes existing literature on nature as a restorative, therapeutic, spiritual setting, offers insight into the experiences of gender nonconformity, and reflects on conducting interviews for the short film and the outcomes of presenting the installation to the public
The behavior of the ionosphere above Wallops Island during the eclipse of 7 March 1970
Variation of ionospheric electron density during solar eclips
Hybrid Position and Orientation Tracking for a Passive Rehabilitation Table-Top Robot
This paper presents a real time hybrid 2D position and orientation tracking system developed for an upper limb rehabilitation robot. Designed to work on a table-top, the robot is to enable home-based upper-limb rehabilitative exercise for stroke patients. Estimates of the robot's position are computed by fusing data from two tracking systems, each utilizing a different sensor type: laser optical sensors and a webcam. Two laser optical sensors are mounted on the underside of the robot and track the relative motion of the robot with respect to the surface on which it is placed. The webcam is positioned directly above the workspace, mounted on a fixed stand, and tracks the robot's position with respect to a fixed coordinate system. The optical sensors sample the position data at a higher frequency than the webcam, and a position and orientation fusion scheme is proposed to fuse the data from the two tracking systems. The proposed fusion scheme is validated through an experimental set-up whereby the rehabilitation robot is moved by a humanoid robotic arm replicating previously recorded movements of a stroke patient. The results prove that the presented hybrid position tracking system can track the position and orientation with greater accuracy than the webcam or optical sensors alone. The results also confirm that the developed system is capable of tracking recovery trends during rehabilitation therapy
Estimating δ15N fractionation and adjusting the lipid correction equation using Southern African freshwater fishes
Stable isotope analysis is an important tool for characterising food web structure; however, interpretation of isotope data can often be flawed. For instance, lipid normalisation and trophic fractionation values are often assumed to be constant, but can vary considerably between ecosystems, species and tissues. Here, previously determined lipid normalisation equations and trophic fractionation values were re-evaluated using freshwater fish species from three rivers in the Upper Zambezian floodplain ecoregion in southern Africa. The parameters commonly used in lipid normalisation equations were not correct for the 18 model species (new D and I parameters were estimated as D = 4.46‰ [95% CI: 2.62, 4.85] and constant I = 0 [95% CI: 0, 0.17]). We suggest that future isotopic analyses on freshwater fishes use our new values if the species under consideration do not have a high lipid content in their white muscle tissue. Nitrogen fractionation values varied between species and river basin; however, the average value closely matched that calculated in previous studies on other species (δ15N fractionation factor of 3.37 ± 1.30 ‰). Here we have highlighted the need to treat stable isotope data correctly in food web studies to avoid misinterpretation of the data
Recommended from our members
How to design a planetary system for different scattering outcomes: giant impact sweet spot, maximizing exocomets, scattered discs
This paper considers the dynamics of the scattering of planetesimals or planetary embryos by a planet on a circumstellar orbit. We classify six regions in the planet's mass versus semimajor axis parameter space according to the dominant outcome for scattered objects: ejected, accreted, remaining, escaping, Oort Cloud, and depleted Oort Cloud. We use these outcomes to consider which planetary system architectures maximize the observability of specific signatures, given that signatures should be detected first around systems with optimal architectures (if such systems exist in nature). Giant impact debris is most readily detectable for 0.1–10 M⊕ planets at 1–5 au, depending on the detection method and spectral type. While A stars have putative giant impact debris at 4–6 au consistent with this sweet spot, that of FGK stars is typically ≪1 au contrary to expectations; an absence of 1–3 au giant impact debris could indicate a low frequency of terrestrial planets there. Three principles maximize the cometary influx from exo-Kuiper belts: a chain of closely separated planets interior to the belt, none of which is a Jupiter-like ejector; planet masses not increasing strongly with distance (for a net inward torque on comets); and ongoing replenishment of comets, possibly by embedded low-mass planets. A high Oort Cloud comet influx requires no ejectors and architectures that maximize the Oort Cloud population. Cold debris discs are usually considered classical Kuiper belt analogues. Here we consider the possibility of detecting scattered disc analogues, which could be betrayed by a broad radial profile and lack of small grains, as well as spherical 100–1000 au mini-Oort Clouds. Some implications for escaping planets around young stars, detached planets akin to Sedna, and the formation of super-Earths are also discussed.MCW, AB, and AS acknowledge the support of the European Union through European Research Council grant number 279973. APJ acknowledges support from NASA grant NNX16AI31G. AS is partially supported by funding from the Center for Exoplanets and Habitable Worlds. The Center for Exoplanets and Habitable Worlds is supported by the Pennsylvania State University, the Eberly College of Science, and the Pennsylvania Space Grant Consortium. This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program
Insights into Planet Formation from Debris Disks: II. Giant Impacts in Extrasolar Planetary Systems
Giant impacts refer to collisions between two objects each of which is massive enough to be considered at least a planetary embryo. The putative collision suffered by the proto-Earth that created the Moon is a prime example, though most Solar System bodies bear signatures of such collisions. Current planet formation models predict that an epoch of giant impacts may be inevitable, and observations of debris around other stars are providing mounting evidence that giant impacts feature in the evolution of many planetary systems. This chapter reviews giant impacts, focussing on what we can learn about planet formation by studying debris around other stars. Giant impact debris evolves through mutual collisions and dynamical interactions with planets. General aspects of this evolution are outlined, noting the importance of the collision-point geometry. The detectability of the debris is discussed using the example of the Moon-forming impact. Such debris could be detectable around another star up to 10 Myr post-impact, but model uncertainties could reduce detectability to a few 100 yr window. Nevertheless the 3% of young stars with debris at levels expected during terrestrial planet formation provide valuable constraints on formation models; implications for super-Earth formation are also discussed. Variability recently observed in some bright disks promises to illuminate the evolution during the earliest phases when vapour condensates may be optically thick and acutely affected by the collision-point geometry. The outer reaches of planetary systems may also exhibit signatures of giant impacts, such as the clumpy debris structures seen around some stars.MCW is grateful for support from the European Union through ERC grant number 279973.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Springer
Case Study of Patients Participating in a Randomised Controlled Trial of Upper-Limb Robotic Rehabilitation in Acute Stroke Services
This paper presents some findings from a randomised controlled trial in patients with upper-limb weakness in acute stroke services within the UK's National Health Service. Three patients were selected from the robot arm of the trial; one who exhibited a large increase in Fugl-Meyer score (change > 30); one who exhibited a moderate change (10 <; change <; 20) and a subject who demonstrated no change between baseline and follow-up. The results from robot assistance level and target achievement over the course of the treatment are presented for the three patients, demonstrating the system's ability to automatically alter the assistance level as patients progress
Genetic steps to organ laterality in zebrafish.
All internal organs are asymmetric along the left-right axis. Here we report a genetic screen to discover mutations which perturb organ laterality. Our particular focus is upon whether, and how, organs are linked to each other as they achieve their laterally asymmetric positions. We generated mutations by ENU mutagenesis and examined F3 progeny using a cocktail of probes that reveal early primordia of heart, gut, liver and pancreas. From the 750 genomes examined, we isolated seven recessive mutations which affect the earliest left-right positioning of one or all of the organs. None of these mutations caused discernable defects elsewhere in the embryo at the stages examined. This is in contrast to those mutations we reported previously (Chen et al., 1997) which, along with left-right abnormalities, cause marked perturbation in gastrulation, body form or midline structures. We find that the mutations can be classified on the basis of whether they perturb relationships among organ laterality. In Class 1 mutations, none of the organs manifest any left-right asymmetry. The heart does not jog to the left and normally leftpredominant BMP4 in the early heart tube remains symmetric. The gut tends to remain midline. There frequently is a remarkable bilateral duplication of liver and pancreas. Embryos with Class 2 mutations have organotypic asymmetry but, in any given embryo, organ positions can be normal, reversed or randomized. Class 3 reveals a hitherto unsuspected gene that selectively affects laterality of heart. We find that visceral organ positions are predicted by the direction of the preceding cardiac jog. We interpret this as suggesting that normally there is linkage between cardiac and visceral organ laterality. Class 1 mutations, we suggest, effectively remove the global laterality signals, with the consequence that organ positions are effectively symmetrical. Embryos with Class 2 mutations do manifest linkage among organs, but it may be reversed, suggesting that the global signals may be present but incorrectly orientated in some of the embryos. That laterality decisions of organs may be independently perturbed, as in the Class 3 mutation, indicates that there are distinctive pathways for reception and organotypic interpretation of the global signals
iRFP is a real time marker for transformation based assays in high content screening
Anchorage independent growth is one of the hallmarks of oncogenic transformation. Here we show that infrared fluorescent protein (iRFP) based assays allow accurate and unbiased determination of colony formation and anchorage independent growth over time. This protocol is particularly compatible with high throughput systems, in contrast to traditional methods which are often labor-intensive, subjective to bias and do not allow further analysis using the same cells. Transformation in a single layer soft agar assay could be documented as early as 2 to 3 days in a 96 well format, which can be easily combined with standard transfection, infection and compound screening setups to allow for high throughput screening to identify therapeutic targets
- …