7 research outputs found

    Prenatal Cocaine Exposure Increases Synaptic Localization of a Neuronal RasGEF, GRASP-1 via Hyperphosphorylation of AMPAR Anchoring Protein, GRIP

    Get PDF
    Prenatal cocaine exposure causes sustained phosphorylation of the synaptic anchoring protein, glutamate receptor interacting protein (GRIP1/2), preventing synaptic targeting of the GluR2/3-containing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs; J. Neurosci. 29: 6308–6319, 2009). Because overexpression of GRIP-associated neuronal rasGEF protein (GRASP-1) specifically reduces the synaptic targeting of AMPARs, we hypothesized that prenatal cocaine exposure enhances GRASP-1 synaptic membrane localization leading to hyper-activation of ras family proteins and heightened actin polymerization. Our results show a markedly increased GRIP1-associated GRASP-1 content with approximately 40% reduction in its rasGEF activity in frontal cortices (FCX) of 21-day-old (P21) prenatal cocaine-exposed rats. This cocaine effect is the result of a persistent protein kinase C (PKC)- and downstream Src tyrosine kinase-mediated GRIP phosphorylation. The hyperactivated PKC also increased membrane-associated GRASP-1 and activated small G-proteins RhoA, cdc42/Rac1 and Rap1 as well as filamentous actin (F-actin) levels without an effect on the phosphorylation state of actin. Since increased F-actin facilitates protein transport, our results suggest that increased GRASP-1 synaptic localization in prenatal cocaine-exposed brains is an adaptive response to restoring the synaptic expression of AMPA-GluR2/3. Our earlier data demonstrated that persistent PKC-mediated GRIP phosphorylation reduces GluR2/3 synaptic targeting in prenatal cocaine-exposed brains, we now show that the increased GRIP-associated GRASP-1 may contribute to the reduction in GluR2/3 synaptic expression and AMPAR signaling defects

    Dissociation of the pharmacological effects of THC by mTOR blockade

    No full text
    The potential therapeutic benefits of cannabinoid compounds have raised interest in understanding the molecular mechanisms that underlie cannabinoid-mediated effects. We previously showed that the acute amnesic-like effects of delta9-tetrahydrocannabinol (THC) were prevented by the subchronic inhibition of the mammalian target of rapamycin (mTOR) pathway. In the present study, we assess the relevance of the mTOR pathway in other acute and chronic pharmacological effects of THC. The rapamycin derivative temsirolimus, an inhibitor of the mTOR pathway approved by the Food and Drug Administration, prevents both the anxiogenic- and the amnesic-like effects produced by acute THC. In contrast, THC-induced anxiolysis, hypothermia, hypolocomotion, and antinociception are not sensitive to the mTOR inhibition. In addition, a clear tolerance to THC-induced anxiolysis, hypothermia, hypolocomotion, and antinociception was observed after chronic treatment, but not to its anxiogenic- and amnesic-like effects. Temsirolimus pre-treatment prevented the amnesic-like effects of chronic THC without affecting the downregulation of CB1 receptors (CB1R) induced by this chronic treatment. Instead, temsirolimus blockade after chronic THC cessation did not prevent the residual cognitive deficit produced by chronic THC. Using conditional knockout mice lacking CB1R in GABAergic or glutamatergic neurons, we found that GABAergic CB1Rs are mainly downregulated under chronic THC treatment conditions, and CB1-GABA-KO mice did not develop cognitive deficits after chronic THC exposure. Therefore, mTOR inhibition by temsirolimus allows the segregation of the potentially beneficial effects of cannabinoid agonists, such as the anxiolytic and antinociceptive effects, from the negative effects, such as anxiogenic- and amnesic-like responses. Altogether, these results provide new insights for targeting the endocannabinoid system in order to prevent possible side effects.EP and AB-G were recipients of a predoctoral fellowship, Ministerio de Educación y Cultura. This work was supported by grants from the Ministerio de Ciencia e Innovación (#SAF2009-07309 to AO and # SAF2011-29864 to RM), Instituto de Salud Carlos III (RD06/0001/0001 to RM), PLAN E/n(Plan Español para el Estímulo de la Economía y el Empleo), the European Commission/n(PHECOMP #LSHM-CT-2007-037669 to RM), Generalitat de Catalunya (SGR-2009-00731/nto RM), INSERM to GM, European Research Council (ENDOFOOD, ERC-2010-StG-/n260515, to GM), Fondation pour la Recherche Medicale to GM, and ICREA (Institució Catalana de Recerca i Estudis Avançats) Academia to R

    Molecular Mechanisms of Early and Late LTP

    No full text
    corecore