19 research outputs found

    Histological observations of palatal malformations in rat embryos induced by retinoic acid treatment

    No full text
    Malformations of the palate were induced in white rat embryos following maternal exposure to retinoic acid (tretinoin). Five experimental groups and the controls were treated by the following protocol: Group 1: pregnant rats received 100 mg retinoic acid (RA)/kg b.w. suspended in corn oil on gestational day (GD) 11.5; Group 2: 20 mg RA/kg b.w. from GD 8-12; Group 3. 20 mg RA/kg b.w. from GD 7.5-11.5; Group 4. 100 mg RA/kg b.w. on GD 10-11; Group 5: 100 mg RA/kg b.w. on GD 10 and 12; Group 6 received corn oil vehicle from GD 7-14.5; and Group 6: served as non-injected controls. In all retinoic acid treated groups, varying degrees of clefts with occasional attempts of fusion were noted. The severity and frequency of the malformations were dependent on dosage or gestational day of drug treatment. Our results indicate that RA, even at the lowest dose tested (20 mg/kg b.w.) severely affects the various tissues constituting the embryonic palatal shelves by altering cell interaction and possibly programmed cell death. These events would then result in lack of or inadequate differentiation with subsequent formation of aberrant craniofacial architecture

    Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models

    No full text
    Zhizhi Sun,1 Vinith Yathindranath,2 Matthew Worden,3 James A Thliveris,4 Stephanie Chu,1 Fiona E Parkinson,1 Torsten Hegmann,1–3 Donald W Miller1 1Department of Pharmacology and Therapeutics, 2Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; 3Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH, USA; 4Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada  Background: Aminosilane-coated iron oxide nanoparticles (AmS-IONPs) have been widely used in constructing complex and multifunctional drug delivery systems. However, the biocompatibility and uptake characteristics of AmS-IONPs in central nervous system (CNS)-relevant cells are unknown. The purpose of this study was to determine the effect of surface charge and magnetic field on toxicity and uptake of AmS-IONPs in CNS-relevant cell types. Methods: The toxicity and uptake profile of positively charged AmS-IONPs and negatively charged COOH-AmS-IONPs of similar size were examined using a mouse brain microvessel endothelial cell line (bEnd.3) and primary cultured mouse astrocytes and neurons. Cell accumulation of IONPs was examined using the ferrozine assay, and cytotoxicity was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: No toxicity was observed in bEnd.3 cells at concentrations up to 200 µg/mL for either AmS-IONPs or COOH-AmS-IONPs. AmS-IONPs at concentrations above 200 µg/mL reduced neuron viability by 50% in the presence or absence of a magnetic field, while only 20% reductions in viability were observed with COOH-AmS-IONPs. Similar concentrations of AmS-IONPs in astrocyte cultures reduced viability to 75% but only in the presence of a magnetic field, while exposure to COOH-AmS-IONPs reduced viability to 65% and 35% in the absence and presence of a magnetic field, respectively. Cellular accumulation of AmS-IONPs was greater in all cell types examined compared to COOH-AmS-IONPs. Rank order of cellular uptake for AmS-IONPs was astrocytes > bEnd.3 > neurons. Accumulation of COOH-AmS-IONPs was minimal and similar in magnitude in different cell types. Magnetic field exposure enhanced cellular accumulation of both AmS- and COOH-AmS-IONPs. Conclusion: Both IONP compositions were nontoxic at concentrations below 100 µg/mL in all cell types examined. At doses above 100 µg/mL, neurons were more sensitive to AmS-IONPs, whereas astrocytes were more vulnerable toward COOH-AmS-IONPs. Toxicity appears to be dependent on the surface coating as opposed to the amount of iron-oxide present in the cell. Keywords: drug delivery, magnetic nanoparticles, magnetic field, biocompatibility, cellular accumulation, brai

    Craniofacial abnormalities induced by retinoic acid: a preliminary histological and scanning electron microscopic (SEM) study

    No full text
    Exogenous retinoic acid has been found to be teratogenic in animals and man. Craniofacial defects induced by retinoic acid have stimulated considerable research interest. The present report deals with scanning electron microscopical observations of the craniofacial region concurrent with histological examination of craniofacial dysmorphism induced in rat embryos following maternal treatment treated with varying dosages of all-trans-retinoic acid (tretinoin). Two groups of pregnant rats were treated with rat embryos exposed to retinoic acid suspended in corn oil (100 mg/kg b.w. on gestational day 11.5 and 50 mg/kg b.w. on gestational day 10, 11 and 12 respectively). A third group was treated with corn oil (vehicle) while a fourth group remained untreated. A wide spectrum of congenital abnormalities, including exophthalmos, microphthalmia and anophthalmia, maxillo-mandibular dysostosis, micrognathia of both maxilla and mandible, cleft palate, sub-development of ear lobe, preauricular tags and macroglossia, were observed in the offspring of retinoic acid treated animals. The abnormalities were both time and dosage dependent, and characteristic of Treacher Collins syndrome when retinoic-acid was administered on gestational day 11.5. In contrast, when retinoic acid was administered were on,gestational days 10-12, the defects were similar to those seen in the first and second pharyngeal arch syndrome, as well as in the oculo-auriculo-vertebral spectrum. Whereas our data support the hypothesis that all-trans retinoic-acid disturbs growth and differentiation of several embryonic cell types essential for normal craniofacial development, its mechanism of action remains unclear
    corecore