40 research outputs found

    Perception of Shadows in Children with Autism Spectrum Disorders

    Get PDF
    Background: Cast shadows in visual scenes can have profound effects on visual perception. Much as they are informative, they also constitute noise as they are salient features of the visual scene potentially interfering with the processing of other features. Here we asked i) whether individuals with autism can exploit the information conveyed by cast shadows; ii) whether they are especially sensitive to noise aspects of shadows. Methodology/Principal Findings: Twenty high-functioning children with autism and twenty typically developing children were asked to recognize familiar objects while the presence, position, and shape of the cast shadow were systematically manipulated. Analysis of vocal reaction time revealed that whereas typically developing children used information from cast shadows to improve object recognition, in autistic children the presence of cast shadows—either congruent or incongruent—interfered with object recognition. Critically, vocal reaction times were faster when the object was presented without a cast shadow. Conclusions/Significance: We conclude that shadow-processing mechanisms are abnormal in autism. As a result, processing shadows becomes costly and cast shadows interfere rather than help object recognition

    Population mechanics: A mathematical framework to study T cell homeostasis

    Get PDF
    Unlike other cell types, T cells do not form spatially arranged tissues, but move independently throughout the body. Accordingly, the number of T cells in the organism does not depend on physical constraints imposed by the shape or size of specific organs. Instead, it is determined by competition for interleukins. From the perspective of classical population dynamics, competition for resources seems to be at odds with the observed high clone diversity, leading to the so-called diversity paradox. In this work we make use of population mechanics, a non-standard theoretical approach to T cell homeostasis that accounts for clone diversity as arising from competition for interleukins. The proposed models show that carrying capacities of T cell populations naturally emerge from the balance between interleukins production and consumption. These models also suggest remarkable functional differences in the maintenance of diversity in naïve and memory pools. In particular, the distribution of memory clones would be biased towards clones activated more recently, or responding to more aggressive pathogenic threats. In contrast, permanence of naïve T cell clones would be determined by their affinity for cognate antigens. From this viewpoint, positive and negative selection can be understood as mechanisms to maximize naïve T cell diversity

    Arterio-venous gradients of IL-6, plasma and serum VEGF and D-dimers in human cancer

    Get PDF
    The circulating angiogenic factors vascular endothelial growth factor-A, interleukin-6 and the fibrin D-dimer fragment were measured in the mesenteric vein, the uterine vein, as well as in peripheral venous and arterial samples in 21 randomly selected patients with operable colorectal, ovarian and cervical carcinoma. In addition, immunohistochemistry for vascular endothelial growth factor-A and interleukin-6 was performed on colorectal tumours of such patients. Serum and plasma vascular endothelial growth factor-A were not significantly elevated in the vein draining the tumours, despite tumour cell expression of vascular endothelial growth factor-A. Serum vascular endothelial growth factor-A is therefore not all tumour-derived. In contrast, serum interleukin-6 was highly elevated in the draining veins in agreement with expression of interleukin-6 in the cytoplasm of tumour cells. In the megakaryoblastic cell line MEG-01, the expression of vascular endothelial growth factor-A was found to be regulated by interleukin-6. Thus, the higher platelet vascular endothelial growth factor-A load resulting in higher serum vascular endothelial growth factor levels in cancer patients may partly result from an interleukin-6 mediated up-regulation of the expression of vascular endothelial growth factor-A in the precursor of the platelet, i.e. the megakaryocyte. We also confirmed by immunohistochemistry that platelets adhere and aggregate on tumour endothelium. We propose that interleukin-6 indirectly promotes tumour angiogenesis through its up-regulation of the vascular endothelial growth factor-A load in platelets. In addition, the correlations found between peripheral venous interleukin-6 and peripheral venous fibrinogen and D-dimers levels, and the high D-dimer levels found in the draining vein of the tumour, in agreement with fibrin deposits found in the tumour stroma, suggest an important role for interleukin-6 in extra-vascular fibrinogen metabolism. Our results suggest a pivotal role for interleukin-6 in the intrinsic link between haemostasis and angiogenesis. This might be of importance in the development of anti-angiogenic agents based on interference with haemostasis

    Exploring Fold Space Preferences of New-born and Ancient Protein Superfamilies

    Get PDF
    The evolution of proteins is one of the fundamental processes that has delivered the diversity and complexity of life we see around ourselves today. While we tend to define protein evolution in terms of sequence level mutations, insertions and deletions, it is hard to translate these processes to a more complete picture incorporating a polypeptide's structure and function. By considering how protein structures change over time we can gain an entirely new appreciation of their long-term evolutionary dynamics. In this work we seek to identify how populations of proteins at different stages of evolution explore their possible structure space. We use an annotation of superfamily age to this space and explore the relationship between these ages and a diverse set of properties pertaining to a superfamily's sequence, structure and function. We note several marked differences between the populations of newly evolved and ancient structures, such as in their length distributions, secondary structure content and tertiary packing arrangements. In particular, many of these differences suggest a less elaborate structure for newly evolved superfamilies when compared with their ancient counterparts. We show that the structural preferences we report are not a residual effect of a more fundamental relationship with function. Furthermore, we demonstrate the robustness of our results, using significant variation in the algorithm used to estimate the ages. We present these age estimates as a useful tool to analyse protein populations. In particularly, we apply this in a comparison of domains containing greek key or jelly roll motifs

    The contributions of image content and behavioral relevancy to overt attention

    Get PDF
    During free-viewing of natural scenes, eye movements are guided by bottom-up factors inherent to the stimulus, as well as top-down factors inherent to the observer. The question of how these two different sources of information interact and contribute to fixation behavior has recently received a lot of attention. Here, a battery of 15 visual stimulus features was used to quantify the contribution of stimulus properties during free-viewing of 4 different categories of images (Natural, Urban, Fractal and Pink Noise). Behaviorally relevant information was estimated in the form of topographical interestingness maps by asking an independent set of subjects to click at image regions that they subjectively found most interesting. Using a Bayesian scheme, we computed saliency functions that described the probability of a given feature to be fixated. In the case of stimulus features, the precise shape of the saliency functions was strongly dependent upon image category and overall the saliency associated with these features was generally weak. When testing multiple features jointly, a linear additive integration model of individual saliencies performed satisfactorily. We found that the saliency associated with interesting locations was much higher than any low-level image feature and any pair-wise combination thereof. Furthermore, the low-level image features were found to be maximally salient at those locations that had already high interestingness ratings. Temporal analysis showed that regions with high interestingness ratings were fixated as early as the third fixation following stimulus onset. Paralleling these findings, fixation durations were found to be dependent mainly on interestingness ratings and to a lesser extent on the low-level image features. Our results suggest that both low- and high-level sources of information play a significant role during exploration of complex scenes with behaviorally relevant information being more effective compared to stimulus features.publisher versio

    Agricultural uses of plant biostimulants

    Get PDF
    corecore