1,035 research outputs found
Complex circular subsidence structures in tephra deposited on large blocks of ice: Varða tuff cone, Öræfajökull, Iceland
Several broadly circular structures up to 16 m in diameter, into which higher strata have sagged and locally collapsed, are present in a tephra outcrop on southwest Öræfajökull, southern Iceland. The tephra was sourced in a nearby basaltic tuff cone at Varða. The structures have not previously been described in tuff cones, and they probably formed by the melting out of large buried blocks of ice emplaced during a preceding jökulhlaup that may have been triggered by a subglacial eruption within the Öræfajökull ice cap. They are named ice-melt subsidence structures, and they are analogous to kettle holes that are commonly found in proglacial sandurs and some lahars sourced in ice-clad volcanoes. The internal structure is better exposed in the Varða examples because of an absence of fluvial infilling and reworking, and erosion of the outcrop to reveal the deeper geometry. The ice-melt subsidence structures at Varða are a proxy for buried ice. They are the only known evidence for a subglacial eruption and associated jökulhlaup that created the ice blocks. The recognition of such structures elsewhere will be useful in reconstructing more complete regional volcanic histories as well as for identifying ice-proximal settings during palaeoenvironmental investigations
The bashful and the boastful : prestigious leaders and social change in Mesolithic Societies
The creation and maintenance of influential leaders and authorities is one of the key themes of archaeological and historical enquiry. However the social dynamics of authorities and leaders in the Mesolithic remains a largely unexplored area of study. The role and influence of authorities can be remarkably different in different situations yet they exist in all societies and in almost all social contexts from playgrounds to parliaments. Here we explore the literature on the dynamics of authority creation, maintenance and contestation in egalitarian societies, and discuss the implications for our interpretation and understanding of the formation of authorities and leaders and changing social relationships within the Mesolithic
Can we rate public support for democracy in a comparable way? Cross-national equivalence of democratic attitudes in the World Value Survey
In this study we examine the cross-cultural equivalence of two scales that measure attitudes toward democracy across 36 countries in the World Value Survey (WVS) 2000. We examine the equivalence of these scales in order to explore if we can meaningfully compare democratic attitudes across countries. Multiple group confirmatory factor analyses (MGCFA) is applied to answer this question. The analyses indicate that the scales may be compared but only to a certain extent and not across all the countries. We close this article by discussing the implications of the findings
Social capital of venture capitalists and start-up funding
How does the social capital of venture capitalists (VCs) affect the funding of start-ups? By building on the rich social capital literature, we hypothesize a positive effect of VCs' social capital, derived from past syndication, on the amount of money that start-ups receive. Specifically, we argue that both structural and relational aspects of VCs' social networks provide VCs with superior access to information about current investment objects and opportunities to leverage them in the future, increasing their willingness to invest in these firms. Our empirical results, derived from a novel dataset containing more than 1,500 first funding rounds in the Internet and IT sector, strongly confirm our hypotheses. We discuss the implications of our findings for theories of venture capital and entrepreneurship, showing that the role and effect of VCs' social capital on start-up firms may be more complex than previously argued in the literature
Aneuploidy in pluripotent stem cells and implications for cancerous transformation
Owing to a unique set of attributes, human pluripotent stem cells (hPSCs) have emerged as a promising cell source for regenerative medicine, disease modeling and drug discovery. Assurance of genetic stability over long term maintenance of hPSCs is pivotal in this endeavor, but hPSCs can adapt to life in culture by acquiring non-random genetic changes that render them more robust and easier to grow. In separate studies between 12.5% and 34% of hPSC lines were found to acquire chromosome abnormalities over time, with the incidence increasing with passage number. The predominant genetic changes found in hPSC lines involve changes in chromosome number and structure (particularly of chromosomes 1, 12, 17 and 20), reminiscent of the changes observed in cancer cells. In this review, we summarize current knowledge on the causes and consequences of aneuploidy in hPSCs and highlight the potential links with genetic changes observed in human cancers and early embryos. We point to the need for comprehensive characterization of mechanisms underpinning both the acquisition of chromosomal abnormalities and selection pressures, which allow mutations to persist in hPSC cultures. Elucidation of these mechanisms will help to design culture conditions that minimize the appearance of aneuploid hPSCs. Moreover, aneuploidy in hPSCs may provide a unique platform to analyse the driving forces behind the genome evolution that may eventually lead to cancerous transformation
Ecological impacts of non-native Pacific oysters (Crassostrea gigas) and management measures for protected areas in Europe
Pacific oysters are now one of the most ‘globalised’ marine invertebrates. They dominate bivalve aquaculture production in many regions and wild populations are increasingly becoming established, with potential to displace native species and modify habitats and ecosystems. While some fishing communities may benefit from wild populations, there is now a tension between the continued production of Pacific oysters and risk to biodiversity, which is of particular concern within protected sites. The issue of the Pacific oyster therefore locates at the intersection between two policy areas: one concerning the conservation of protected habitats, the other relating to livelihoods and the socio-economics of coastal aquaculture and fishing communities. To help provide an informed basis for management decisions, we first summarise evidence for ecological impacts of wild Pacific oysters in representative coastal habitats. At local scales, it is clear that establishment of Pacific oysters can significantly alter diversity, community structure and ecosystem processes, with effects varying among habitats and locations and with the density of oysters. Less evidence is available to evaluate regional-scale impacts. A range of management measures have been applied to mitigate negative impacts of wild Pacific oysters and we develop recommendations which are consistent with the scientific evidence and believe compatible with multiple interests. We conclude that all stakeholders must engage in regional decision making to help minimise negative environmental impacts, and promote sustainable industry development
Systems biology of platelet-vessel wall interactions
Platelets are small, anucleated cells that participate in primary hemostasis by forming a hemostatic plug at the site of a blood vessel's breach, preventing blood loss. However, hemostatic events can lead to excessive thrombosis, resulting in life-threatening strokes, emboli, or infarction. Development of multi-scale models coupling processes at several scales and running predictive model simulations on powerful computer clusters can help interdisciplinary groups of researchers to suggest and test new patient-specific treatment strategies
Exposures to Airborne Particulate Matter and Adverse Perinatal Outcomes: A Biologically Plausible Mechanistic Framework for Exploring Potential Effect Modification by Nutrition
OBJECTIVES: The specific objectives are threefold: to describe the biologically plausible mechanistic pathways by which exposure to particulate matter (PM) may lead to the adverse perinatal outcomes of low birth weight (LBW), intrauterine growth retardation (IUGR), and preterm delivery (PTD); review the evidence showing that nutrition affects the biologic pathways; and explain the mechanisms by which nutrition may modify the impact of PM exposure on perinatal outcomes. METHODS: We propose an interdisciplinary conceptual framework that brings together maternal and infant nutrition, air pollution exposure assessment, and cardiopulmonary and perinatal epidemiology. Five possible albeit not exclusive biologic mechanisms have been put forth in the emerging environmental sciences literature and provide corollaries for the proposed framework. CONCLUSIONS: Protecting the environmental health of mothers and infants remains a top global priority. The existing literature indicates that the effects of PM on LBW, PTD, and IUGR may manifest through the cardiovascular mechanisms of oxidative stress, inflammation, coagulation, endothelial function, and hemodynamic responses. PM exposure studies relating mechanistic pathways to perinatal outcomes should consider the likelihood that biologic responses and adverse birth outcomes may be derived from both PM and non-PM sources (e.g., nutrition). In the concluding section, we present strategies for empirically testing the proposed model and developing future research efforts
Ni−Fe (Oxy)hydroxide Modified Graphene Additive Manufactured (3D-Printed) Electrochemical Platforms as an Efficient Electrocatalyst for the Oxygen Evolution Reaction
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim We demonstrate that polylactic acid (PLA)/graphene additive manufactured (3D-printed) electrodes (Gr/AMEs) electrodeposited with Ni−Fe (oxy)hydroxide can efficiently catalyse the oxygen evolution reaction (OER). X-ray photoelectron spectroscopy (XPS) depth profiling combined with Atomic Force Microscopy (AFM) and Tip Enhanced Raman Spectroscopy (TERS) deduced the composition and depth of the Ni−Fe (oxy)hydroxide layer. The composition of the resulting electrocatalytic surfaces are tailored through altering the concentrations of nickel and iron within the electrodeposited solutions, which give rise to optimised AMEs OER performance (within 0.1 M KOH). The optimal OER performance was observed from a Ni−Fe (oxy)hydroxide with a 10 % content of Fe, which displayed an OER onset potential and overpotential of+1.47 V (vs. RHE) and 519 mV, respectively. These values arecomparable to that of polycrystalline Iridium (+ 1.43 V (vs. RHE) and ca. 413 mV), as well as being significantly less electropositive than a bare/unmodified AME. This work is essential for those designing, fabricating and modulating additive manufactured electrodes
- …
