61 research outputs found
Drilling Predation on Serpulid Polychaetes (Ditrupa arietina) from the Pliocene of the Cope Basin, Murcia Region, Southeastern Spain
We report quantitative analyses of drilling predation on the free-living, tube-dwelling serpulid polychaete Ditrupa arietina from the Cope Cabo marine succession (Pliocene, Spain). Tubes of D. arietina are abundant in the sampled units: 9 bulk samples from 5 horizons yielded ∼5925 specimens of D. arietina. Except for fragmentation, tubes were well preserved. Complete specimens ranged from 3.1 to 13.4 mm in length and displayed allometric growth patterns, with larger specimens being relatively slimmer. Drilled Ditrupa tubes were observed in all samples. Drillholes, identified as Oichnus paraboloides, were characterized by circular to elliptical outline (drillhole eccentricity increased with its diameter), parabolic vertical profile, outer diameter larger than inner diameter, penetration of one tube wall only, narrow range of drill-hole sizes, and non-random (anterior) distribution of drillholes. A total of 233 drilled specimens were identified, with drilling frequencies varying across horizons from 2.7% to 21% (3.9% for pooled data). Many tube fragments were broken across a drillhole suggesting that the reported frequencies are conservative and that biologically-facilitated (drill-hole induced) fragmentation hampers fossil preservation of complete serpulid tubes. No failed or repaired holes were observed. Multiple complete drillholes were present (3.9%). Drilled specimens were significantly smaller than undrilled specimens and tube length and drill-hole diameter were weakly correlated. The results suggest that drillholes were produced by a size-selective, site-stereotypic predatory organism of unknown affinity. The qualitative and quantitative patterns reported here are mostly consistent with previous reports on recent and fossil Ditrupa and reveal parallels with drilling patterns documented for scaphopod mollusks, a group that is ecologically and morphologically similar to Ditrupa. Consistent with previous studies, the results suggest that free-dwelling serpulid polychaetes are preyed upon by drilling predators and may provide a viable source of data on biotic interactions in the fossil record
The emerging modern face of mood disorders: a didactic editorial with a detailed presentation of data and definitions
The present work represents a detailed description of our current understanding and knowledge of the epidemiology, etiopathogenesis and clinical manifestations of mood disorders, their comorbidity and overlap, and the effect of variables such as gender and age. This review article is largely based on the 'Mood disorders' chapter of the Wikibooks Textbook of Psychiatry http://en.wikibooks.org/wiki/Textbook_of_Psychiatry/Mood_Disorders
Hemipelagic deposits on the Mendeleev and northwestern Alpha submarine Ridges in the Arctic Ocean: acoustic stratigraphy, depositional environment and an inter-ridge correlation calibrated by the ACEX results
Letter. Late cretaceous seasonal ocean variability from the arctic
The modern Arctic Ocean is regarded as barometer of global change and amplifier of global warming1 and therefore records of past Arctic change are of a premium for palaeoclimate reconstruction. Little is known of the state of the Arctic Ocean in the greenhouse period of the late Cretaceous, yet records from such times may yield important clues to its future behaviour given current global warming trends. Here we present the first seasonally resolved sedimentary record from the Cretaceous from the Alpha Ridge of the Arctic Ocean. This “paleo-sediment trap” provides new insights into the workings of the Cretaceous marine biological carbon pump. Seasonal primary production was dominated by diatom algae but was not related to upwelling as previously hypothesised. Rather, production occurred within a stratified water column, involving specially adapted species in blooms resembling those of the modern North Pacific Subtropical Gyre, or those indicated for the Mediterranean sapropels. With increased CO2 levels and warming currently driving increased stratification in the global ocean, this style of production that is adapted to stratification may become more widespread. Our evidence for seasonal diatom production and flux testify to an ice-free summer, but thin accumulations of terrigenous sediment within the diatom ooze are consistent with the presence of intermittent sea ice in the winter, supporting a wide body of evidence for low temperatures in the Late Cretaceous Arctic Ocean, rather than recent suggestions of a 15 °C mean annual temperature at this time
Challenges and opportunities for integrating lake ecosystem modelling approaches
A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others (‘reinventing the wheel’). The other challenge is to avoid focusing on only one type of model, while ignoring new and diverse approaches that have become available (‘having tunnel vision’). In this paper, we aim at improving the awareness of existing models and knowledge of concurrent approaches in lake ecosystem modelling, without covering all possible model tools and avenues. First, we present a broad variety of modelling approaches. To illustrate these approaches, we give brief descriptions of rather arbitrarily selected sets of specific models. We deal with static models (steady state and regression models), complex dynamic models (CAEDYM, CE-QUAL-W2, Delft 3D-ECO, LakeMab, LakeWeb, MyLake, PCLake, PROTECH, SALMO), structurally dynamic models and minimal dynamic models. We also discuss a group of approaches that could all be classified as individual based: super-individual models (Piscator, Charisma), physiologically structured models, stage-structured models and trait-based models. We briefly mention genetic algorithms, neural networks, Kalman filters and fuzzy logic. Thereafter, we zoom in, as an in-depth example, on the multi-decadal development and application of the lake ecosystem model PCLake and related models (PCLake Metamodel, Lake Shira Model, IPH-TRIM3D-PCLake). In the discussion, we argue that while the historical development of each approach and model is understandable given its ‘leading principle’, there are many opportunities for combining approaches. We take the point of view that a single ‘right’ approach does not exist and should not be strived for. Instead, multiple modelling approaches, applied concurrently to a given problem, can help develop an integrative view on the functioning of lake ecosystems. We end with a set of specific recommendations that may be of help in the further development of lake ecosystem model
Comparing predatory drillholes to taphonomic damage from simulated wave action on a modern gastropod
Diversity-dependent evolutionary rates in early Palaeozoic zooplankton
The extent to which biological diversity affects rates of diversification is central to understanding macroevolutionary dynamics, yet no consensus has emerged on the importance of diversity-dependence of evolutionary rates. Here, we analyse the species-level fossil record of early Palaeozoic graptoloids, documented with high temporal resolution, to test directly whether rates of diversification were influenced by levels of standing diversity within this major clade of marine zooplankton. To circumvent the statistical regression-to-the-mean artefact, whereby higher- and lower-than-average values of diversity tend to be followed by negative and positive diversification rates, we construct a non-parametric, empirically scaled, diversity-independent null model by randomizing the observed diversification rates with respect to time. Comparing observed correlations between diversity and diversification rate to those expected from this diversity-independent model, we find evidence for negative diversity-dependence, accounting for up to 12% of the variance in diversification rate, with maximal correlation at a temporal lag of approximately 1 Myr. Diversity-dependence persists throughout the Ordovician and Silurian, despite a major increase in the strength and frequency of extinction and speciation pulses in the Silurian. By contrast to some previous work, we find that diversity-dependence affects rates of speciation and extinction nearly equally on average, although subtle differences emerge when we compare the Ordovician and Silurian
- …
