7 research outputs found

    Twenty-year advanced DInSAR analysis of severe land subsidence: The Alto Guadalentin Basin (Spain) case study

    Get PDF
    A twenty-year period of severe land subsidence evolution in the Alto Guadalentin Basin (southeast Spain) is monitored using multi-sensor SAR images, processed by advanced differential interferometric synthetic aperture radar (DInSAR) techniques. The SAR images used in this study consist of four datasets acquired by ERS-1/2, ENVISAT, ALOS and COSMO-SkyMed satellites between 1992 and 2012. The integration of ground surface displacement maps retrieved for different time periods allows us to quantify up to 2.50 m of cumulated displacements that occurred between 1992 and 2012 in the Alto Guadalentin Basin. DInSAR results were locally compared with global positioning system (GPS) data available for two continuous stations located in the study area, demonstrating the high consistency of local vertical motion measurements between the two different surveying techniques. An average absolute error of 4.6 +/- 4 mm for the ALOS data and of 4.8 +/- 3.5 mm for the COSMO-SkyMed data confirmed the reliability of the analysis. The spatial analysis of DInSAR ground surface displacement reveals a direct correlation with the thickness of the compressible alluvial deposits. Detected ground subsidence in the past 20 years is most likely a consequence of a 100-200 m groundwater level drop that has persisted since the 1970s due to the overexploitation of the Alto Guadalentin aquifer system. The negative gradient of the pore pressure is responsible for the extremely slow consolidation of a very thick (> 100 m) layer of fine-grained silt and clay layers with low vertical hydraulic permeability (approximately 50 mm/h) wherein the maximum settlement has still not been reached. (C) 2015 Published by Elsevier B.V

    Groundwater and Subsidence Modeling Combining Geological and Multi-Satellite SAR Data over the Alto Guadalentin Aquifer (SE Spain)

    No full text
    In the current context of climate change, improving groundwater monitoring and management is an important issue for human communities in arid environments. The exploitation of groundwater resources can trigger land subsidence producing damage in urban structures and infrastructures. Alto Guadalentin aquifer system in SE Spain has been exploited since 1960 producing an average piezometric level drop of 150 m. This work presents a groundwater model that reproduces groundwater evolution during 52 years with an average error below 10%. The geometry of the model was improved introducing a layer of less permeable and deformable soft soils derived from InSAR deformation and borehole data. The resulting aquifer system history of the piezometric level has been compared with ENVISAT deformation data to calculate a first-order relationship between groundwater changes, soft soil thickness, and surface deformation. This relationship has been validated with the displacement data fromERS and Cosmo-SkyMed satellites. The resulting regression function is then used as an empirical subsidence model to estimate a first approximation of the deformation of the aquifer system since the beginning of the groundwater extraction, reaching 1 to 5.5m in 52 years. These rough estimations highlight the limitations of the proposed empirical model, requiring the implementation of a coupled hydrogeomechanical model

    Depth Averaged Models for Fast Landslide Propagation: Mathematical, Rheological and Numerical Aspects

    No full text
    corecore