20 research outputs found

    Efficacy of prone position in acute respiratory distress syndrome: overview of systematic reviews

    Full text link
    Abstract OBJECTIVE To identify and integrate the available scientific evidence related to the use of the prone position in patients with acute respiratory distress syndrome for the reduction of the outcome variable of mortality compared to the dorsal decubitus position. METHOD Overview of systematic reviews or meta-analyzes of randomized clinical trials. It included studies that evaluated the use of prone positioning in patients with acute respiratory distress syndrome published between 2014 and 2016. The AMSTAR tool was used to determine the methodological quality of studies. The GRADE system was used to establish the overall quality of evidence for the mortality outcome. RESULTS From the search strategy, were retrieved seven relevant manuscripts of high methodological quality. CONCLUSION Scientific evidence supports that combined use of protective ventilatory strategy and prone positioning for periods between 16 and 20 hours in patients with acute respiratory distress syndrome and PaO2/FiO2 ratio lower than 150 mm/Hg results in significant reduction of mortality rate

    Evenness mediates the global relationship between forest productivity and richness

    Get PDF
    1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions

    Arbuscular mycorrhiza effects on plant performance under osmotic stress

    No full text
    At present, drought and soil salinity are among the most severe environmental stresses that affect the growth of plants through marked reduction of water uptake which lowers water potential, leading to osmotic stress. In general, osmotic stress causes a series of morphological, physiological, biochemical, and molecular changes that affect plant performance. Several studies have found that diverse types of soil microorganisms improve plant growth, especially when plants are under stressful conditions. Most important are the arbuscular mycorrhizal fungi (AMF) which form arbuscular mycorrhizas (AM) with approximately 80% of plant species and are present in almost all terrestrial ecosystems. Beyond the well-known role of AM in improving plant nutrient uptake, the contributions of AM to plants coping with osmotic stress merit analysis. With this review, we describe the principal direct and indirect mechanisms by which AM modify plant responses to osmotic stress, highlighting the role of AM in photosynthetic activity, water use efficiency, osmoprotectant production, antioxidant activities, and gene expression. We also discuss the potential for using AMF to improve plant performance under osmotic stress conditions and the lines of research needed to optimize AM use in plant production.The authors thank CONICYT, Chile, for the financial support through FONDECYT 1170264 (P. Cornejo), FONDECYT 1161326 (P. Cartes) and scholarship for Doctoral Thesis, Grant No. 21161211 (C. Santander).Peer Reviewe
    corecore