37 research outputs found

    Probabilistic Invasion Underlies Natural Gut Microbiome Stability.

    No full text
    Species compositions of gut microbiomes impact host health [1-3], but the processes determining these compositions are largely unknown. An unexplained observation is that gut species composition varies widely between individuals but is largely stable over time within individuals [4, 5]. Stochastic factors during establishment may drive these alternative stable states (colonized versus non-colonized) [6, 7], which can influence susceptibility to pathogens, such as Clostridium difficile. Here we sought to quantify and model the dose response, dynamics, and stability of bacterial colonization in the fruit fly (Drosophila melanogaster) gut. Our precise, high-throughput technique revealed stable between-host variation in colonization when individual germ-free flies were fed their own natural commensals (including the probiotic Lactobacillus plantarum). Some flies were colonized while others remained germ-free even at extremely high bacterial doses. Thus, alternative stable states of colonization exist even in this low-complexity model of host-microbe interactions. These alternative states are driven by a fundamental asymmetry between the inoculum population and the stably colonized population that is mediated by spatial localization and a population bottleneck, which makes stochastic effects important by lowering the effective population size. Prior colonization with other bacteria reduced the chances of subsequent colonization, thus increasing the stability of higher-diversity guts. Therefore, stable gut diversity may be driven by inherently stochastic processes, which has important implications for combatting infectious diseases and for stably establishing probiotics in the gut

    Evidence of human occupation in Mexico around the Last Glacial Maximum.

    Get PDF
    The initial colonization of the Americas remains a highly debated topic1, and the exact timing of the first arrivals is unknown. The earliest archaeological record of Mexico-which holds a key geographical position in the Americas-is poorly known and understudied. Historically, the region has remained on the periphery of research focused on the first American populations2. However, recent investigations provide reliable evidence of a human presence in the northwest region of Mexico3,4, the Chiapas Highlands5, Central Mexico6 and the Caribbean coast7-9 during the Late Pleistocene and Early Holocene epochs. Here we present results of recent excavations at Chiquihuite Cave-a high-altitude site in central-northern Mexico-that corroborate previous findings in the Americas10-17of cultural evidence that dates to the Last Glacial Maximum (26,500-19,000 years ago)18, and which push back dates for human dispersal to the region possibly as early as 33,000-31,000 years ago. The site yielded about 1,900 stone artefacts within a 3-m-deep stratified sequence, revealing a previously unknown lithic industry that underwent only minor changes over millennia. More than 50 radiocarbon and luminescence dates provide chronological control, and genetic, palaeoenvironmental and chemical data document the changing environments in which the occupants lived. Our results provide new evidence for the antiquity of humans in the Americas, illustrate the cultural diversity of the earliest dispersal groups (which predate those of the Clovis culture) and open new directions of research

    Dynamics of flow: a nonlinear perspective

    No full text
    The aims of this study are to consider the experience of flow from a nonlinear dynamics perspective. The processes and temporal nature of intrinsic motivation and flow, would suggest that flow experiences fluctuate over time in a dynamical fashion. Thus it can be argued that the potential for chaos is strong. The sample was composed of 20 employees (both full and part time) recruited from a number of different organizations and work backgrounds. The Experience Sampling Method (ESM) was used for data collection. Once obtained the temporal series, they were subjected to various analyses proper to the com- plexity theory (Visual Recurrence Analysis and Surrogate Data Analysis). Results showed that in 80% of the cases, flow presented a chaotic dynamic, in that, flow experiences delineated a complex dynamic whose patterns of change were not easy to predict. Implications of the study, its limitations and future research are discussed
    corecore