23 research outputs found

    Species Accumulation Curves and Incidence-Based Species Richness Estimators to Appraise the Diversity of Cultivable Yeasts from Beech Forest Soils

    Get PDF
    Background: Yeast-like fungi inhabit soils throughout all climatic zones in a great abundance. While recent estimations predicted a plethora of prokaryotic taxa in one gram of soil, similar data are lacking for fungi, especially yeasts. Methodology/Principal Findings: We assessed the diversity of soil yeasts in different forests of central Germany using cultivation-based techniques with subsequent identification based on rDNA sequence data. Based on experiments using various pre-cultivation sample treatment and different cultivation media we obtained the highest number of yeasts by analysing mixed soil samples with a single nutrient-rich medium. Additionally, several species richness estimators were applied to incidence-based data of 165 samples. All of them predicted a similar range of yeast diversity, namely 14 to 16 species. Randomized species richness curves reached saturation in all applied estimators, thus indicating that the majority of species is detected after approximately 30 to 50 samples analysed. Conclusions/Significance: In this study we demonstrate that robust species identification as well as mathematical approaches are essential to reliably estimate the sampling effort needed to describe soil yeast communities. This approach has great potential for optimisation of cultivation techniques and allows high throughput analysis in the future

    A Linear Time Algorithm for Determining Almost Bipartite Graphs

    No full text

    Emergence of the epidemic methicillin-resistant Staphylococcus aureus strain USA300 coincides with horizontal transfer of the arginine catabolic mobile element and speG-mediated adaptations for survival on skin.

    Get PDF
    The arginine catabolic mobile element (ACME) is the largest genomic region distinguishing epidemic USA300 strains of methicillin-resistant Staphylococcus aureus (MRSA) from other S. aureus strains. However, the functional relevance of ACME to infection and disease has remained unclear. Using phylogenetic analysis, we have shown that the modular segments of ACME were assembled into a single genetic locus in Staphylococcus epidermidis and then horizontally transferred to the common ancestor of USA300 strains in an extremely recent event. Acquisition of one ACME gene, speG, allowed USA300 strains to withstand levels of polyamines (e.g., spermidine) produced in skin that are toxic to other closely related S. aureus strains. speG-mediated polyamine tolerance also enhanced biofilm formation, adherence to fibrinogen/fibronectin, and resistance to antibiotic and keratinocyte-mediated killing. We suggest that these properties gave USA300 a major selective advantage during skin infection and colonization, contributing to the extraordinary evolutionary success of this clone
    corecore