30 research outputs found
Mechanistic insights into carbon–carbon coupling on NiAu and PdAu single-atom alloys
Carbon–carbon coupling is an important step in many catalytic reactions, and performing sp³–sp³ carbon–carbon coupling heterogeneously is particularly challenging. It has been reported that PdAu single-atom alloy (SAA) model catalytic surfaces are able to selectively couple methyl groups, producing ethane from methyl iodide. Herein, we extend this study to NiAu SAAs and find that Ni atoms in Au are active for C–I cleavage and selective sp³–sp³ carbon–carbon coupling to produce ethane. Furthermore, we perform ab initio kinetic Monte Carlo simulations that include the effect of the iodine atom, which was previously considered a bystander species. We find that model NiAu surfaces exhibit a similar chemistry to PdAu, but the reason for the similarity is due to the role the iodine atoms play in terms of blocking the Ni atom active sites. Specifically, on NiAu SAAs, the iodine atoms outcompete the methyl groups for occupancy of the Ni sites leaving the Me groups on Au, while on PdAu SAAs, the binding strengths of methyl groups and iodine atoms at the Pd atom active site are more similar. These simulations shed light on the mechanism of this important sp3–sp3 carbon–carbon coupling chemistry on SAAs. Furthermore, we discuss the effect of the iodine atoms on the reaction energetics and make an analogy between the effect of iodine as an active site blocker on this model heterogeneous catalyst and homogeneous catalysts in which ligands must detach in order for the active site to be accessed by the reactants
Atomically-thin micas as proton conducting membranes
Monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable
to thermal protons. For thicker two-dimensional (2D) materials, proton
conductivity diminishes exponentially so that, for example, monolayer MoS2 that
is just three atoms thick is completely impermeable to protons. This seemed to
suggest that only one-atom-thick crystals could be used as proton conducting
membranes. Here we show that few-layer micas that are rather thick on the
atomic scale become excellent proton conductors if native cations are
ion-exchanged for protons. Their areal conductivity exceeds that of graphene
and hBN by one-two orders of magnitude. Importantly, ion-exchanged 2D micas
exhibit this high conductivity inside the infamous gap for proton-conducting
materials, which extends from 100 C to 500 C. Areal conductivity of
proton-exchanged monolayer micas can reach above 100 S cm-2 at 500 C, well
above the current requirements for the industry roadmap. We attribute the fast
proton permeation to 5 A-wide tubular channels that perforate micas' crystal
structure which, after ion exchange, contain only hydroxyl groups inside. Our
work indicates that there could be other 2D crystals with similar nm-scale
channels, which could help close the materials gap in proton-conducting
applications
Supramolecular binding and separation of hydrocarbons within a functionalised porous metal-organic framework
Supramolecular interactions are fundamental to host-guest binding in chemical and biological processes. Direct visualisation of such supramolecular interactions within host-guest systems is extremely challenging but crucial for the understanding of their function. We report a comprehensive study combining neutron scattering with synchrotron X-ray and neutron diffraction, coupled with computational modelling, to define the detailed binding at a molecular level of acetylene, ethylene and ethane within the porous host NOTT-300. This study reveals the simultaneous and cooperative hydrogen-bonding, π···π stacking interactions and inter-molecular dipole interactions in the binding of acetylene and ethylene to give up to twelve individual weak supramolecular interactions aligned within the host to form an optimal geometry for intelligent, selective binding of hydrocarbons. We also report, for the first time, the cooperative binding of a mixture of acetylene and ethylene within the porous host together with the corresponding breakthrough experiment and analysis of mixed gas adsorption isotherms
Mechanistic insights into carbon–carbon coupling on NiAu and PdAu single-atom alloys
Carbon–carbon coupling is an important step in many catalytic reactions, and performing sp³–sp³ carbon–carbon coupling heterogeneously is particularly challenging. It has been reported that PdAu single-atom alloy (SAA) model catalytic surfaces are able to selectively couple methyl groups, producing ethane from methyl iodide. Herein, we extend this study to NiAu SAAs and find that Ni atoms in Au are active for C–I cleavage and selective sp³–sp³ carbon–carbon coupling to produce ethane. Furthermore, we perform ab initio kinetic Monte Carlo simulations that include the effect of the iodine atom, which was previously considered a bystander species. We find that model NiAu surfaces exhibit a similar chemistry to PdAu, but the reason for the similarity is due to the role the iodine atoms play in terms of blocking the Ni atom active sites. Specifically, on NiAu SAAs, the iodine atoms outcompete the methyl groups for occupancy of the Ni sites leaving the Me groups on Au, while on PdAu SAAs, the binding strengths of methyl groups and iodine atoms at the Pd atom active site are more similar. These simulations shed light on the mechanism of this important sp3–sp3 carbon–carbon coupling chemistry on SAAs. Furthermore, we discuss the effect of the iodine atoms on the reaction energetics and make an analogy between the effect of iodine as an active site blocker on this model heterogeneous catalyst and homogeneous catalysts in which ligands must detach in order for the active site to be accessed by the reactants