48 research outputs found
The Ellipso Mobile Satellite System: An Optimum Approach for Efficient and Flexible Global Mobile Satellite Communications Service
Mobile Communications Holdings, Inc is in the process of developing and fielding a new, innovative, satellite-based mobile communications system which will offer global service. This system features broadband code division multiple access, simple satellites, and a constellation design that features elliptical orbits, partitionable subconstellations, and medium earth orbit altitudes. This design permits it to efficiently place satellite capability where and when it is most needed and minimize deployment of capability where and when it is little needed. This design offers a unique opportunity to deploy and operate a commercial mobile satellite system with the least and the most effective use of funds
Extreme Ultra-Violet Spectroscopy of the Lower Solar Atmosphere During Solar Flares
The extreme ultraviolet portion of the solar spectrum contains a wealth of
diagnostic tools for probing the lower solar atmosphere in response to an
injection of energy, particularly during the impulsive phase of solar flares.
These include temperature and density sensitive line ratios, Doppler shifted
emission lines and nonthermal broadening, abundance measurements, differential
emission measure profiles, and continuum temperatures and energetics, among
others. In this paper I shall review some of the advances made in recent years
using these techniques, focusing primarily on studies that have utilized data
from Hinode/EIS and SDO/EVE, while also providing some historical background
and a summary of future spectroscopic instrumentation.Comment: 34 pages, 8 figures. Submitted to Solar Physics as part of the
Topical Issue on Solar and Stellar Flare
The dependence of the EIT wave velocity on the magnetic field strength
"EIT waves" are a wavelike phenomenon propagating in the corona, which were
initially observed in the extreme ultraviolet (EUV) wavelength by the EUV
Imaging Telescope (EIT). Their nature is still elusive, with the debate between
fast-mode wave model and non-wave model. In order to distinguish between these
models, we investigate the relation between the EIT wave velocity and the local
magnetic field in the corona. It is found that the two parameters show
significant negative correlation in most of the EIT wave fronts, {\it i.e.},
EIT wave propagates more slowly in the regions of stronger magnetic field. Such
a result poses a big challenge to the fast-mode wave model, which would predict
a strong positive correlation between the two parameters. However, it is
demonstrated that such a result can be explained by the fieldline stretching
model, \emph{i.e.,} that "EIT waves" are apparently-propagating brightenings,
which are generated by successive stretching of closed magnetic field lines
pushed by the erupting flux rope during coronal mass ejections (CMEs).Comment: 11 pages, 8 figures, accepted for publication in Solar Phy
Coronal Shock Waves, EUV Waves, and Their Relation to CMEs. III. Shock-Associated CME/EUV Wave in an Event with a Two-Component EUV Transient
On 17 January 2010, STEREO-B observed in extreme ultraviolet (EUV) and white
light a large-scale dome-shaped expanding coronal transient with perfectly
connected off-limb and on-disk signatures. Veronig et al. (2010, ApJL 716, 57)
concluded that the dome was formed by a weak shock wave. We have revealed two
EUV components, one of which corresponded to this transient. All of its
properties found from EUV, white light, and a metric type II burst match
expectations for a freely expanding coronal shock wave including correspondence
to the fast-mode speed distribution, while the transient sweeping over the
solar surface had a speed typical of EUV waves. The shock wave was presumably
excited by an abrupt filament eruption. Both a weak shock approximation and a
power-law fit match kinematics of the transient near the Sun. Moreover, the
power-law fit matches expansion of the CME leading edge up to 24 solar radii.
The second, quasi-stationary EUV component near the dimming was presumably
associated with a stretched CME structure; no indications of opening magnetic
fields have been detected far from the eruption region.Comment: 18 pages, 10 figures. Solar Physics, published online. The final
publication is available at http://www.springerlink.co
What is the Nature of EUV Waves? First STEREO 3D Observations and Comparison with Theoretical Models
One of the major discoveries of the Extreme ultraviolet Imaging Telescope
(EIT) on SOHO were intensity enhancements propagating over a large fraction of
the solar surface. The physical origin(s) of the so-called `EIT' waves is still
strongly debated. They are considered to be either wave (primarily fast-mode
MHD waves) or non-wave (pseudo-wave) interpretations. The difficulty in
understanding the nature of EUV waves lies with the limitations of the EIT
observations which have been used almost exclusively for their study. Their
limitations are largely overcome by the SECCHI/EUVI observations on-board the
STEREO mission. The EUVI telescopes provide high cadence, simultaneous
multi-temperature coverage, and two well-separated viewpoints. We present here
the first detailed analysis of an EUV wave observed by the EUVI disk imagers on
December 07, 2007 when the STEREO spacecraft separation was .
Both a small flare and a CME were associated with the wave cadence, and single
temperature and viewpoint coverage. These limitations are largely overcome by
the SECCHI/EUVI observations on-board the STEREO mission. The EUVI telescopes
provide high cadence, simultaneous multi-temperature coverage, and two
well-separated viewpoints. Our findings give significant support for a
fast-mode interpretation of EUV waves and indicate that they are probably
triggered by the rapid expansion of the loops associated with the CME.Comment: Solar Physics, 2009, Special STEREO Issue, in pres
Large-scale Bright Fronts in the Solar Corona: A Review of "EIT waves"
``EIT waves" are large-scale coronal bright fronts (CBFs) that were first
observed in 195 \AA\ images obtained using the Extreme-ultraviolet Imaging
Telescope (EIT) onboard the \emph{Solar and Heliospheric Observatory (SOHO)}.
Commonly called ``EIT waves", CBFs typically appear as diffuse fronts that
propagate pseudo-radially across the solar disk at velocities of 100--700 km
s with front widths of 50-100 Mm. As their speed is greater than the
quiet coronal sound speed (200 km s) and comparable to the
local Alfv\'{e}n speed (1000 km s), they were initially
interpreted as fast-mode magnetoacoustic waves ().
Their propagation is now known to be modified by regions where the magnetosonic
sound speed varies, such as active regions and coronal holes, but there is also
evidence for stationary CBFs at coronal hole boundaries. The latter has led to
the suggestion that they may be a manifestation of a processes such as Joule
heating or magnetic reconnection, rather than a wave-related phenomena. While
the general morphological and kinematic properties of CBFs and their
association with coronal mass ejections have now been well described, there are
many questions regarding their excitation and propagation. In particular, the
theoretical interpretation of these enigmatic events as magnetohydrodynamic
waves or due to changes in magnetic topology remains the topic of much debate.Comment: 34 pages, 19 figure
Recent Advances in Understanding Particle Acceleration Processes in Solar Flares
We review basic theoretical concepts in particle acceleration, with
particular emphasis on processes likely to occur in regions of magnetic
reconnection. Several new developments are discussed, including detailed
studies of reconnection in three-dimensional magnetic field configurations
(e.g., current sheets, collapsing traps, separatrix regions) and stochastic
acceleration in a turbulent environment. Fluid, test-particle, and
particle-in-cell approaches are used and results compared. While these studies
show considerable promise in accounting for the various observational
manifestations of solar flares, they are limited by a number of factors, mostly
relating to available computational power. Not the least of these issues is the
need to explicitly incorporate the electrodynamic feedback of the accelerated
particles themselves on the environment in which they are accelerated. A brief
prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
The Plasma Environment of Comets
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138863/1/rog199129s2976.pd
Collisional and Radiative Processes in Optically Thin Plasmas
Most of our knowledge of the physical processes in distant plasmas is obtained
through measurement of the radiation they produce. Here we provide an overview of the
main collisional and radiative processes and examples of diagnostics relevant to the microphysical
processes in the plasma. Many analyses assume a time-steady plasma with ion
populations in equilibrium with the local temperature and Maxwellian distributions of particle
velocities, but these assumptions are easily violated in many cases. We consider these
departures from equilibrium and possible diagnostics in detail