25 research outputs found

    Impacts of extreme winter warming events on litter decomposition in a sub-Arctic heathland

    Get PDF
    Arctic climate change is expected to lead to a greater frequency of extreme winter warming events. During these events, temperatures rapidly increase to well above 0 degrees C for a number of days, which can lead to snow melt at the landscape scale, loss of insulating snow cover and warming of soils. However, upon return of cold ambient temperatures, soils can freeze deeper and may experience more freeze-thaw cycles due to the absence of a buffering snow layer. Such loss of snow cover and changes in soil temperatures may be critical for litter decomposition since a stable soil microclimate during winter (facilitated by snow cover) allows activity of soil organisms. Indeed, a substantial part of fresh litter decomposition may occur in winter. However, the impacts of extreme winter warming events on soil processes such as decomposition have never before been investigated. With this study we quantify the impacts of winter warming events on fresh litter decomposition using field simulations and lab studies. Winter warming events were simulated in sub-Arctic heathland using infrared heating lamps and soil warming cables during March (typically the period of maximum snow depth) in three consecutive years of 2007, 2008, and 2009. During the winters of 2008 and 2009, simulations were also run in January (typically a period of shallow snow cover) on separate plots. The lab study included soil cores with and without fresh litter subjected to winter-warming simulations in climate chambers. Litter decomposition of common plant species was unaffected by winter warming events simulated either in the lab (litter of Betula pubescens ssp. czerepanovii), or field (litter of Vaccinium vitis-idaea, and B. pubescens ssp. czerepanovii) with the exception of Vaccinium myrtillus (a common deciduous dwarf shrub) that showed less mass loss in response to winter warming events. Soil CO2 efflux measured in the lab study was (as expected) highly responsive to winter warming events but surprisingly fresh litter decomposition was not. Most fresh litter mass loss in the lab occurred during the first 3-4 weeks (simulating the period after litter fall). In contrast to past understanding, this suggests that winter decomposition of fresh litter is almost nonexistent and observations of substantial mass loss across the cold season seen here and in other studies may result from leaching in autumn, prior to the onset of "true" winter. Further, our findings surprisingly suggest that extreme winter warming events do not affect fresh litter decomposition. Crown Copyright (c) 2009 Published by Elsevier Ltd. All rights reserved

    Persistent reduction of segment growth and photosynthesis in a widespread and important sub-Arctic moss species after cessation of three years of experimental winter warming

    Get PDF
    1. Winter is a period of dormancy for plants of cold environments. However, winter climate is changing, leading to an increasing frequency of stochastic warm periods (winter warming events) and concomitant reductions in snow cover. These conditions can break dormancy for some plants and expose them to freeze-and-thaw stress. Mosses are a major component of high latitude ecosystems, yet the longer-term impacts of such winter warming events on mosses remain unknown. 2. In order to determine the longer-term legacy effects of winter warming events on mosses, we undertook a simulation of these events over three consecutive winters in a sub-Arctic dwarf shrub-dominated open woodland. The mat-forming feathermoss Hylocomium splendens (the most abundant cryptogam in this system), is one of the most widespread Arctic and boreal mosses and plays a key functional role in ecosystems. We studied the ecophysiological performance of this moss during the summers of the experimental period (2007-2009) and in the following years (2010-2013). 3. We show that the previously reported warming-induced reduction in segment growth and photosynthesis during the experimental years was persistent. Four years after the last event, photosynthesis and segment growth were still 30 and 36 % lower than control levels, which was only a slight improvement from 44 and 43 % four years earlier. Winter warming did not affect segment symmetry. During the years after the last simulated event, in both warmed and control plots, chlorophyll fluorescence and segment growth, but not net photosynthesis, increased slightly. The increases were probably driven by increased summer rainfall over the study years, highlighting the sensitivity of this moss to rainfall change. 4. Overall, the legacy effects shown here demonstrate that this widespread and important moss is likely to be significantly disadvantaged in a future sub-Arctic climate where frequent winter warming events may become the norm. Given the key importance of mosses for soil insulation, shelter and carbon sequestration in high-latitude regions, such persistent impacts may ultimately affect important ecosystem functions

    Persistent reduction of segment growth and photosynthesis in a widespread and important sub-Arctic moss species after cessation of three years of experimental winter warming

    Get PDF
    1. Winter is a period of dormancy for plants of cold environments. However, winter climate is changing, leading to an increasing frequency of stochastic warm periods (winter warming events) and concomitant reductions in snow cover. These conditions can break dormancy for some plants and expose them to freeze-and-thaw stress. Mosses are a major component of high latitude ecosystems, yet the longer-term impacts of such winter warming events on mosses remain unknown. 2. In order to determine the longer-term legacy effects of winter warming events on mosses, we undertook a simulation of these events over three consecutive winters in a sub-Arctic dwarf shrub-dominated open woodland. The mat-forming feathermoss Hylocomium splendens (the most abundant cryptogam in this system), is one of the most widespread Arctic and boreal mosses and plays a key functional role in ecosystems. We studied the ecophysiological performance of this moss during the summers of the experimental period (2007-2009) and in the following years (2010-2013). 3. We show that the previously reported warming-induced reduction in segment growth and photosynthesis during the experimental years was persistent. Four years after the last event, photosynthesis and segment growth were still 30 and 36 % lower than control levels, which was only a slight improvement from 44 and 43 % four years earlier. Winter warming did not affect segment symmetry. During the years after the last simulated event, in both warmed and control plots, chlorophyll fluorescence and segment growth, but not net photosynthesis, increased slightly. The increases were probably driven by increased summer rainfall over the study years, highlighting the sensitivity of this moss to rainfall change. 4. Overall, the legacy effects shown here demonstrate that this widespread and important moss is likely to be significantly disadvantaged in a future sub-Arctic climate where frequent winter warming events may become the norm. Given the key importance of mosses for soil insulation, shelter and carbon sequestration in high-latitude regions, such persistent impacts may ultimately affect important ecosystem functions

    Development of new metrics to assess and quantify climatic drivers of extreme event driven Arctic browning

    Get PDF
    Rapid climate change in Arctic regions is resulting in more frequent extreme climatic events. These can cause large-scale vegetation damage, and are therefore among key drivers of declines in biomass and productivity (or “browning”) observed across Arctic regions in recent years. Extreme events which cause browning are driven by multiple interacting climatic variables, and are defined by their ecological impact – most commonly plant mortality. Quantifying the climatic causes of these multivariate, ecologically defined events is challenging, and so existing work has typically determined the climatic causes of browning events on a case-by-case basis in a descriptive, unsystematic manner. While this has allowed development of important qualitative understanding of the mechanisms underlying extreme event driven browning, it cannot definitively link browning to specific climatic variables, or predict how changes in these variables will influence browning severity. It is therefore not yet possible to determine how extreme events will influence ecosystem responses to climate change across Arctic regions. To address this, novel, process-based climate metrics that can be used to quantify the conditions and interactions that drive the ecological responses defining common extreme events were developed using publicly available snow depth and air temperature data (two of the main climate variables implicated in browning). These process-based metrics explained up to 63% of variation in plot-level Normalised Difference Vegetation Index (NDVI) at sites within areas affected by extreme events across boreal and sub-Arctic Norway. This demonstrates potential to use simple metrics to assess the contribution of extreme events to changes in Arctic biomass and productivity at regional scales. In addition, scaling up these metrics across the Norwegian Arctic region resulted in significant correlations with remotely-sensed NDVI, and provided much-needed insights into how climatic variables interact to determine the severity of browning across Arctic regions

    Arctic browning: Impacts of extreme climatic events on heathland ecosystem CO2 fluxes.

    Get PDF
    Extreme climatic events are among the drivers of recent declines in plant biomass and productivity observed across Arctic ecosystems, known as "Arctic browning." These events can cause landscape-scale vegetation damage and so are likely to have major impacts on ecosystem CO2 balance. However, there is little understanding of the impacts on CO2 fluxes, especially across the growing season. Furthermore, while widespread shoot mortality is commonly observed with browning events, recent observations show that shoot stress responses are also common, and manifest as high levels of persistent anthocyanin pigmentation. Whether or how this response impacts ecosystem CO2 fluxes is not known. To address these research needs, a growing season assessment of browning impacts following frost drought and extreme winter warming (both extreme climatic events) on the key ecosystem CO2 fluxes Net Ecosystem Exchange (NEE), Gross Primary Productivity (GPP), ecosystem respiration (Reco ) and soil respiration (Rsoil ) was carried out in widespread sub-Arctic dwarf shrub heathland, incorporating both mortality and stress responses. Browning (mortality and stress responses combined) caused considerable site-level reductions in GPP and NEE (of up to 44%), with greatest impacts occurring at early and late season. Furthermore, impacts on CO2 fluxes associated with stress often equalled or exceeded those resulting from vegetation mortality. This demonstrates that extreme events can have major impacts on ecosystem CO2 balance, considerably reducing the carbon sink capacity of the ecosystem, even where vegetation is not killed. Structural Equation Modelling and additional measurements, including decomposition rates and leaf respiration, provided further insight into mechanisms underlying impacts of mortality and stress on CO2 fluxes. The scale of reductions in ecosystem CO2 uptake highlights the need for a process-based understanding of Arctic browning in order to predict how vegetation and CO2 balance will respond to continuing climate change

    Understanding the drivers of extensive plant damage in boreal and Arctic ecosystems: Insights from field surveys in the aftermath of damage.

    Get PDF
    The exact cause of population dieback in nature is often challenging to identify retrospectively. Plant research in northern regions has in recent decades been largely focussed on the opposite trend, namely increasing populations and higher productivity. However, a recent unexpected decline in remotely-sensed estimates of terrestrial Arctic primary productivity suggests that warmer northern lands do not necessarily result in higher productivity. As large-scale plant dieback may become more frequent at high northern latitudes with increasing frequency of extreme events, understanding the drivers of plant dieback is especially urgent. Here, we report on recent extensive damage to dominant, short, perennial heath and tundra plant populations in boreal and Arctic Norway, and assess the potential drivers of this damage. In the High-Arctic archipelago of Svalbard, we recorded that 8-50% of Cassiope tetragona and Dryas octopetala shoots were dead, and that the ratios of dead shoots increased from 2014 to 2015. In boreal Norway, 38-63% of Calluna vulgaris shoots were dead, while Vaccinium myrtillus had damage to 91% of shoots in forested sites, but was healthy in non-forested sites. Analyses of numerous sources of environmental information clearly point towards a winter climate-related reason for damage to three of these four species. In Svalbard, the winters of 2011/12 and 2014/15 were documented to be unusually severe, i.e. insulation from ambient temperature fluctuation by snow was largely absent, and ground-ice enforced additional stress. In boreal Norway, the 2013/14 winter had a long period with very little snow combined with extremely low precipitation rates, something which resulted in frost drought of uncovered Calluna plants. However, extensive outbreaks of a leaf-defoliating geometrid moth were identified as the driver of Vaccinium mortality. These results suggest that weather and biotic extreme events potentially have strong impacts on the vegetation state of northern lands

    The handbook for standardised field and laboratory measurements in terrestrial climate-change experiments and observational studies

    Get PDF
    Climate change is a worldwide threat to biodiversity and ecosystem structure, functioning, and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate‐change impacts across the soil–plant–atmosphere continuum. An increasing number of climate‐change studies is creating new opportunities for meaningful and high‐quality generalisations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data re‐use, synthesis, and upscaling. Many of these challenges relate to a lack of an established “best practice” for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
    corecore