6 research outputs found
Motion-compensated noninvasive periodontal health monitoring using handheld and motor-based photoacoustic-ultrasound imaging systems
Simultaneous visualization of the teeth and periodontium is of significant clinical interest for image-based monitoring of periodontal health. We recently reported the application of a dual-modality photoacoustic-ultrasound (PA-US) imaging system for resolving periodontal anatomy and periodontal pocket depths in humans. This work utilized a linear array transducer attached to a stepper motor to generate 3D images via maximum intensity projection. This prior work also used a medical head immobilizer to reduce artifacts during volume rendering caused by motion from the subject (e.g., breathing, minor head movements). However, this solution does not completely eliminate motion artifacts while also complicating the imaging procedure and causing patient discomfort. To address this issue, we report the implementation of an image registration technique to correctly align B-mode PA-US images and generate artifact-free 2D cross-sections. Application of the deshaking technique to PA phantoms revealed 80% similarity to the ground truth when shaking was intentionally applied during stepper motor scans. Images from handheld sweeps could also be deshaken using an LED PA-US scanner. In ex vivo porcine mandibles, pigmentation of the enamel was well-estimated within 0.1 mm error. The pocket depth measured in a healthy human subject was also in good agreement with our prior study. This report demonstrates that a modality-independent registration technique can be applied to clinically relevant PA-US scans of the periodontium to reduce operator burden of skill and subject discomfort while showing pot
Photonic molecules and spectral engineering
This chapter reviews the fundamental optical properties and applications of
pho-tonic molecules (PMs) - photonic structures formed by electromagnetic
coupling of two or more optical microcavities (photonic atoms). Controllable
interaction between light and matter in photonic atoms can be further modified
and en-hanced by the manipulation of their mutual coupling. Mechanical and
optical tunability of PMs not only adds new functionalities to
microcavity-based optical components but also paves the way for their use as
testbeds for the exploration of novel physical regimes in atomic physics and
quantum optics. Theoretical studies carried on for over a decade yielded novel
PM designs that make possible lowering thresholds of semiconductor microlasers,
producing directional light emission, achieving optically-induced transparency,
and enhancing sensitivity of microcavity-based bio-, stress- and
rotation-sensors. Recent advances in material science and nano-fabrication
techniques make possible the realization of optimally-tuned PMs for cavity
quantum electrodynamic experiments, classical and quantum information
processing, and sensing.Comment: A review book chapter: 29 pages, 19 figure