924 research outputs found

    A P53-Independent DNA Damage Response Suppresses Oncogenic Proliferation and Genome Instability

    Get PDF
    The Mre11-Rad50-Nbs1 complex is a DNA double-strand break sensor that mediates a tumor-suppressive DNA damage response (DDR) in cells undergoing oncogenic stress, yet the mechanisms underlying this effect are poorly understood. Using a genetically inducible primary mammary epithelial cell model, we demonstrate that Mre11 suppresses proliferation and DNA damage induced by diverse oncogenic drivers through a p53-independent mechanism. Breast tumorigenesis models engineered to express a hypomorphic Mre11 allele exhibit increased levels of oncogene-induced DNA damage, R-loop accumulation, and chromosomal instability with a characteristic copy number loss phenotype. Mre11 complex dysfunction is identified in a subset of human triple-negative breast cancers and is associated with increased sensitivity to DNA-damaging therapy and inhibitors of ataxia telangiectasia and Rad3 related (ATR) and poly (ADP-ribose) polymerase (PARP). Thus, deficiencies in the Mre11-dependent DDR drive proliferation and genome instability patterns in p53-deficient breast cancers and represent an opportunity for therapeutic exploitation

    Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue

    Get PDF
    Bioactive glasses (BGs) and related glass-ceramic biomaterials have been used in bone tissue repair for over 30years. Previous work in this field was comprehensively reviewed including by their inventor Larry Hench, and the key features and properties of BGs are well understood. More recently, attention has focused on their modification to further enhance the osteogenic behaviour, or further compositional changes that may introduce additional properties, such as antimicrobial activity. Evidence is emerging that BGs and related glass-ceramics may be modified in such a way as to simultaneously introduce more than one desirable property. The aim of this review is therefore to consider the evidence that these more recent inorganic modifications to glass and glass-ceramic biomaterials are effective, and whether or not these new compositions represent sufficiently versatile systems to underpin the development of a new generation of truly multifunctional biomaterials to address pressing clinical needs in orthopaedic and dental surgery. Indeed, a number of classical glass compositions exhibited antimicrobial activity, however the structural design and the addition of specific ions, i.e. Ag(+), Cu(+), and Sr(2+), are able to impart a multifunctional character to these systems, through the combination of, for example, bioactivity with bactericidal activity. STATEMENT OF SIGNIFICANCE: In this review we demonstrate the multifunctional potential of bioactive glasses and related glass-ceramics as biomaterials for orthopaedic and craniofacial/dental applications. Therefore, it considers the evidence that the more recent inorganic modifications to glass and glass-ceramic biomaterials are able to impart antimicrobial properties alongside the more classical bone bonding and osteoconduction. These properties are attracting a special attention nowadays that bacterial infections are an increasing challenge in orthopaedics. We also focus the manuscript on the versatility of these systems as a basis to underpin the development of a new generation of truly multifunctional biomaterials to address pressing clinical needs in orthopaedic, craniofacial and dental surgery

    Nonextensivity in Geological Faults?

    Full text link
    Geological fault systems, as the San Andreas fault (SAF) in USA, constitute typical examples of self-organizing systems in nature. In this paper, we have considered some geophysical properties of the SAF system to test the viability of the nonextensive models for earthquakes developed in [Phys. Rev. E {\bf 73}, 026102, 2006]. To this end, we have used 6188 earthquakes events ranging in the magnitude interval 2<m<82 < m < 8 that were taken from the Network Earthquake International Center catalogs (NEIC, 2004-2006) and the Bulletin of the International Seismological Centre (ISC, 1964-2003). For values of the Tsallis nonextensive parameter q1.68q \simeq 1.68, it is shown that the energy distribution function deduced in above reference provides an excellent fit to the NEIC and ISC SAF data.Comment: 9 pages, 1 figure, standard LaTeX fil

    ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research

    Get PDF
    Abstract Background NTRK1, NTRK2 and NTRK3 fusions are present in a plethora of malignancies across different histologies. These fusions represent the most frequent mechanism of oncogenic activation of these receptor tyrosine kinases, and biomarkers for the use of TRK small molecule inhibitors. Given the varying frequency of NTRK1/2/3 fusions, crucial to the administration of NTRK inhibitors is the development of optimal approaches for the detection of human cancers harbouring activating NTRK1/2/3 fusion genes. Materials and methods Experts from several Institutions were recruited by the European Society for Medical Oncology (ESMO) Translational Research and Precision Medicine Working Group (TR and PM WG) to review the available methods for the detection of NTRK gene fusions, their potential applications, and strategies for the implementation of a rational approach for the detection of NTRK1/2/3 fusion genes in human malignancies. A consensus on the most reasonable strategy to adopt when screening for NTRK fusions in oncologic patients was sought, and further reviewed and approved by the ESMO TR and PM WG and the ESMO leadership. Results The main techniques employed for NTRK fusion gene detection include immunohistochemistry, fluorescence in situ hybridization (FISH), RT-PCR, and both RNA-based and DNA-based next generation sequencing (NGS). Each technique has advantages and limitations, and the choice of assays for screening and final diagnosis should also take into account the resources and clinical context. Conclusion In tumours where NTRK fusions are highly recurrent, FISH, RT-PCR or RNA-based sequencing panels can be used as confirmatory techniques, whereas in the scenario of testing an unselected population where NTRK1/2/3 fusions are uncommon, either front-line sequencing (preferentially RNA-sequencing) or screening by immunohistochemistry followed by sequencing of positive cases should be pursued

    Effects of starch/polycaprolactone-based blends for spinal cord injury regeneration in neurons/glial cells viability and proliferation

    Get PDF
    Spinal cord injury (SCI) leads to drastic alterations on the quality of life of afflicted individuals. With the advent of Tissue Engineering and Regenerative Medicine where approaches combining biomaterials, cells and growth factors are used, one can envisage novel strategies that can adequately tackle this problem. The objective of this study was to evaluate a blend of starch with poly(ε-caprolactone) (SPCL) aimed to be used for the development of scaffolds spinal cord injury (SCI) repair. SPCL linear parallel filaments were deposited on polystyrene coverslips and assays were carried out using primary cultures of hippocampal neurons and glial cells. Light and fluorescence microscopy observations revealed that both cell populations were not negatively affected by the SPCL-based biomaterial. MTS and total protein quantification indicated that both cell viability and proliferation rates were similar to controls. Both neurons and astrocytes occasionally contacted the surface of SPCL filaments through their dendrites and cytoplasmatic processes, respectively, while microglial cells were unable to do so. Using single cell [Ca2+ ]i imaging, hippocampal neurons were observed growing within the patterned channels and were functional as assessed by the response to a 30 mM KCl stimulus. The present data demonstrated that SPCL-based blends are potentially suitable for the development of scaffolds in SCI regenerative medicine.Portuguese Foundation for Science and Technology through funds from POCTI and/or FEDER programs (Funding to ICVS, 3B's Research Group and post doctoral fellowship to A.J. Salgado-SFRH/BPD/17595/2004)

    CDM Accelerating Cosmology as an Alternative to LCDM model

    Full text link
    A new accelerating cosmology driven only by baryons plus cold dark matter (CDM) is proposed in the framework of general relativity. In this model the present accelerating stage of the Universe is powered by the negative pressure describing the gravitationally-induced particle production of cold dark matter particles. This kind of scenario has only one free parameter and the differential equation governing the evolution of the scale factor is exactly the same of the Λ\LambdaCDM model. For a spatially flat Universe, as predicted by inflation (Ωdm+Ωbaryon=1\Omega_{dm}+\Omega_{baryon}=1), it is found that the effectively observed matter density parameter is Ωmeff=1α\Omega_{meff} = 1- \alpha, where α\alpha is the constant parameter specifying the CDM particle creation rate. The supernovae test based on the Union data (2008) requires α0.71\alpha\sim 0.71 so that Ωmeff0.29\Omega_{meff} \sim 0.29 as independently derived from weak gravitational lensing, the large scale structure and other complementary observations.Comment: 6 pages, 3 figure

    Dynamics of an Intruder in Dense Granular Fluids

    Get PDF
    We investigate the dynamics of an intruder pulled by a constant force in a dense two-dimensional granular fluid by means of event-driven molecular dynamics simulations. In a first step, we show how a propagating momentum front develops and compactifies the system when reflected by the boundaries. To be closer to recent experiments \cite{candelier2010journey,candelier2009creep}, we then add a frictional force acting on each particle, proportional to the particle's velocity. We show how to implement frictional motion in an event-driven simulation. This allows us to carry out extensive numerical simulations aiming at the dependence of the intruder's velocity on packing fraction and pulling force. We identify a linear relation for small and a nonlinear regime for high pulling forces and investigate the dependence of these regimes on granular temperature

    Crossover and self-averaging in the two-dimensional site-diluted Ising model

    Full text link
    Using the newly proposed probability-changing cluster (PCC) Monte Carlo algorithm, we simulate the two-dimensional (2D) site-diluted Ising model. Since we can tune the critical point of each random sample automatically with the PCC algorithm, we succeed in studying the sample-dependent Tc(L)T_c(L) and the sample average of physical quantities at each Tc(L)T_c(L) systematically. Using the finite-size scaling (FSS) analysis for Tc(L)T_c(L), we discuss the importance of corrections to FSS both in the strong-dilution and weak-dilution regions. The critical phenomena of the 2D site-diluted Ising model are shown to be controlled by the pure fixed point. The crossover from the percolation fixed point to the pure Ising fixed point with the system size is explicitly demonstrated by the study of the Binder parameter. We also study the distribution of critical temperature Tc(L)T_c(L). Its variance shows the power-law LL dependence, LnL^{-n}, and the estimate of the exponent nn is consistent with the prediction of Aharony and Harris [Phys. Rev. Lett. {\bf 77}, 3700 (1996)]. Calculating the relative variance of critical magnetization at the sample-dependent Tc(L)T_c(L), we show that the 2D site-diluted Ising model exhibits weak self-averaging.Comment: 6 pages including 6 eps figures, RevTeX, to appear in Phys. Rev.

    Reinforcement of poly-l-lactic acid electrospun membranes with strontium borosilicate bioactive glasses for bone tissue engineering

    Get PDF
    Herein, for the first time, we combined poly-l-lactic acid (PLLA) with a strontium borosilicate bioactive glass (BBG-Sr) using electrospinning to fabricate a composite bioactive PLLA membrane loaded with 10% (w/w) of BBG-Sr glass particles (PLLA-BBG-Sr). The composites were characterised by scanning electron microscopy (SEM) and microcomputer tomography (μ-CT), and the results showed that we successfully fabricated smooth and uniform fibres (1-3μm in width) with a homogeneous distribution of BBG-Sr microparticles (<45μm). Degradation studies (in phosphate buffered saline) demonstrated that the incorporation of BBG-Sr glass particles into the PLLA membranes increased their degradability and water uptake with a continuous release of cations. The addition of BBG-Sr glass particles enhanced the membrane's mechanical properties (69% higher Young modulus and 36% higher tensile strength). Furthermore, cellular in vitro evaluation using bone marrow-derived mesenchymal stem cells (BM-MSCs) demonstrated that PLLA-BBG-Sr membranes promoted the osteogenic differentiation of the cells as demonstrated by increased alkaline phosphatase activity and up-regulated osteogenic gene expression (Alpl, Sp7 and Bglap) in relation to PLLA alone. These results strongly suggest that the composite PLLA membranes reinforced with the BBG-Sr glass particles have potential as an effective biomaterial capable of promoting bone regeneration. STATEMENT OF SIGNIFICANCE: PLLA membranes were reinforced with 10% (w/w) of strontium-bioactive borosilicate glass microparticles, and their capacity to induce the osteogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) was evaluated. These membranes presented an increased: degradability, water uptake, Young modulus and tensile strength. We also demonstrated that these membranes are non-cytotoxic and promote the attachment of BM-MSCs. The addition of the glass microparticles into the PLLA membranes promoted the increase of ALP activity (under osteogenic conditions), as well as the BM-MSCs osteogenic differentiation as shown by the upregulation of Alpl, Sp7 and Bglap gene expression. Overall, we demonstrated that the reinforcement of PLLA with glass microparticles results in a biomaterial with the appropriate properties for the regeneration of bone tissue
    corecore