57 research outputs found

    A limited set of starch related genes explain several interrelated traits in potato

    Get PDF
    To understand the molecular basis of potato starch related traits and the underlying starch biosynthesis and degradation, a Quantitative Trait Locus (QTL) analysis in combination with a candidate gene approach was performed. The diploid mapping population C × E, consisting of 249 individuals, was assayed over two consecutive years, for chipping colour, cold induced sweetening, starch content, starch granule size, starch gelling temperature, starch enthalpy, amylose content and degree of starch phosphorylation. QTLs were observed for all traits, except enthalpy on eight out of the twelve potato chromosomes. Several QTLs were found to be consistent over 2 years. Clustering of co-localizing QTLs was observed on some chromosomes, indicating common genetic factors for the different traits. On chromosome 2, Soluble Starch Synthase 2 mapped on the same position as QTLs for starch phosphorylation, starch gelling temperature and amylose content. a-glucan, water dikinase co-localizes on chromosome 5 together with QTLs for starch phosphorylation and cold induced sweetening. Furthermore, the genes coding for two phosphorylases (StPho1a and StPho2) coincide with QTLs for starch gelling temperature, chipping colour and starch granule size on chromosome 2 and a QTL for starch phosphorylation on chromosome 9, respectively. The results suggest allelic variation acting on the genetics of the different trait

    A low cost multi-purpose target chamber

    No full text

    A review of biomass burning emissions part III: intensive optical properties of biomass burning particles

    Get PDF
    Because of its wide coverage over much of the globe, biomass burning has been widely studied in the context of direct radiative forcing. Such study is warranted as smoke particles scatter and at times absorb solar radiation efficiently. Further, as much of what is known about smoke transport and impacts is based on remote sensing measurements, the optical properties of smoke particles have far reaching effects into numerous aspects of biomass burning studies. Global estimates of direct forcing have been widely varying, ranging from near zero to −1Wm−2. A significant part of this difference can be traced to varying assumptions on the optical properties of smoke. This manuscript is the third part of four examining biomass-burning emissions. Here we review and discuss the literature concerning measurement and modeling of optical properties of biomass-burning particles. These include available data from published sensitivity studies, field campaigns, and inversions from the Aerosol Robotic Network (AERONET) of Sun photometer sites. As a whole, optical properties reported in the literature are varied, reflecting both the dynamic nature of fires, variations in smoke aging processes and differences in measurement technique. We find that forward modeling or “internal closure” studies ultimately are of little help in resolving outstanding measurement issues due to the high degree of degeneracy in solutions when using “reasonable” input parameters. This is particularly notable with respect to index of refraction and the treatment of black carbon. Consequently, previous claims of column closure may in fact be more ambiguous. Differences between in situ and retrieved !o values have implications for estimates of mass scattering and mass absorption efficiencies. In this manuscript we review and discuss this community dataset. Strengths and lapses are pointed out, future research topics are prioritized, and best estimates and uncertainties of key smoke particle parameters are provided

    The R3 resistance to Phytophthora infestans in potato is conferred by two closely linked R genes with distinct specificities

    No full text
    The R3 locus of potato (Solanum tuberosum L.) confers full resistance to avirulent isolates of Phytophthora infestans, the causal agent of late blight. R3 resides in the distal part of chromosome 11 and segregates in a potato mapping population, from which a well-saturated amplified fragment length polymorphism map is available. Using a population of 1,748 plants, we constructed a high-resolution genetic map at the R3 locus. Using the combination of fine mapping and accurate disease testing with specific P infestans isolates, we detected that the R3 locus is composed of two genes with distinct specificities. The two genes R3a and R3b are 0.4 cM apart and have both been introgressed from S. demissum, the 'donor' species of most characterized race-specific R genes to P infestans. A natural recombinant between R3a and R3b was discovered in one accession of S. demissum. The synteny between the R3 locus and the tomato 12 locus is discussed
    corecore