103 research outputs found

    Application of diamond-like carbon coatings to elastomers frictional surfaces

    Get PDF
    Nitrile-butyl rubber-like materials were coated with amorphous hydrogenated diamond-like carbon (DLC) coatings in order to modify their surface and tribological properties. Measurements of water contact angle were performed by the sessile drop method and showed that the coated samples are more hydrophobic with water contact angles up to 116°. The surface free energy of the elastomers was calculated by the acid-base regression method considering polar and dispersive contributions and the results were correlated with changes in the surface chemistry measured by X-ray photoelectron spectroscopy. It has been found that the lower presence of oxygen functional groups on the elastomer surfaces led to lower surface free energies, even though the polar contribution was not predominant. We also found that the DLC coatings led to a significant decrease of the surface free energy (up to 16%) and that there is a good correlation between the surface free energy values and the corresponding water contact angle values. The coefficient of friction was also measured and presented a significant decrease after coating with DLC. © 2008 Elsevier Ltd. All rights reserved.The authors acknowledge the financial support of the EU from the Sixth framework programme in the KRISTAL Project no. 515837-2. L. Martínez and Y. Huttel acknowledge the Spanish “Ministerio de Educación y Ciencia” for the “Juan de la Cierva” and “Ramón y Cajal” programmes, respectively. R. Nevshupa acknowledges the “Marie Curie” programme (MIF1-CT-2006-22067)

    Chronic lymphocytic leukemia patients with IGH translocations are characterized by a distinct genetic landscape with prognostic implications

    Get PDF
    Chromosome 14q32 rearrangements/translocations involving the immunoglobulin heavy chain (IGH) are rarely detected in chronic lymphocytic leukemia (CLL). The prognostic significance of the IGH translocation is controversial and its mutational profile remains unknown. Here, we present for the first time a comprehensive next-generation sequencing (NGS) analysis of 46 CLL patients with IGH rearrangement (IGHR-CLLs) and we demonstrate that IGHR-CLLs have a distinct mutational profile with recurrent mutations in NOTCH1, IGLL5, POT1, BCL2, FBXW7, ZMYM3, MGA, BRAF and HIST1H1E genes. Interestingly, BCL2 and FBXW7 mutations were significantly associated with this subgroup and almost half of BCL2, IGLL5 and HISTH1E mutations reported were previously identified in non-Hodgkin lymphomas. Notably, IGH/BCL2 rearrangements were associated with a lower mutation frequency and carried BCL2 and IGLL5 mutations, while the other IGHR-CLLs had mutations in genes related to poor prognosis (NOTCH1, SF3B1 and TP53) and shorter time to first treatment (TFT). Moreover, IGHR-CLLs patients showed a shorter TFT than CLL patients carrying 13q-, normal fluorescence in situ hybridization (FISH) and +12 CLL, being this prognosis particularly poor when NOTCH1, SF3B1, TP53, BIRC3 and BRAF were also mutated. The presence of these mutations not only was an independent risk factor within IGHR-CLLs, but also refined the prognosis of low-risk cytogenetic patients (13q-/normal FISH). Hence, our study demonstrates that IGHR-CLLs have a distinct mutational profile from the majority of CLLs and highlights the relevance of incorporating NGS and the status of IGH by FISH analysis to refine the risk-stratification CLL model

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section

    Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum

    Get PDF
    We report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' at lg(E/eV)=18.519.0\lg(E/{\rm eV})=18.5-19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A>4A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    La secuenciación masiva dirigida revela que los pacientes con leucemia linfática crónica y reordenamiento de igh presentan mutaciones en los genes POT1, EGR2, BRAF, IGLL5 Y MGA

    Get PDF
    Abstract [CO-081] Introducción: La traslocación de la región 14q32, que contiene el gen de la cadena pesada de las inmunoglobulinas (IGH), aparece en el 4-9% de pacientes de leucemia linfática crónica(LLC). Aunque algunos estudios le atribuyen a este subgrupo un pronóstico desfavorable, sus características clínicas y biológicas no se conocen en profundidad. La secuenciación masiva (NGS) ha mejorado notablemente el conocimiento de la heterogeneidad genética y clínica de la LLC, por lo que nos planteamos el análisis del perfil mutacional de estos pacientes para definir mejor su pronóstico. Métodos: Se analizaron 231 pacientes de LLC, de los cuales 42 presentaban traslocación de 14q32. En todos los casos se disponía de datos clínicos y FISH. Se diseñó un panel personalizado de 54 genes, seleccionados por su frecuencia e implicación en la patogenia de la enfermedad. La secuenciación se realizó en la plataforma NextSeq(Illumina). El panel cubre el 97% de las regiones (>100X) con una profundidad de 606 lecturas/base, permitiendo la detección de variantes presentes en >3% de las células..
    corecore