623 research outputs found
Steady state behaviour in atomic three-level lambda and ladder systems with incoherent population pumping
The steady state in three-level lambda and ladder systems is studied. It is
well-known that in a lambda system this steady state is the coherent population
trapping state, independent of the presence of spontaneous emission. In
contrast, the steady state in a ladder system is in general not stable against
radiative decay and exhibits a minimum in the population of the ground state.
It is shown that incoherent population pumping destroys the stability of the
coherent population trapping state in the lambda system and suppresses a
previously discovered sharp dip in the steady state response. In the ladder
system the observed minimum disappears in the presence of an incoherent pump on
the upper transition.Comment: 4 pages, RevTex, 5 figures, to appear in Phys. Rev.
Density pertubation of unparticle dark matter in the flat Universe
The unparticle has been suggested as a candidate of dark matter. We
investigated the growth rate of the density perturbation for the unparticle
dark matter in the flat Universe. First, we consider the model in which
unparticle is the sole dark matter and find that the growth factor can be
approximated well by , where is
the equation of state of unparticle. Our results show that the presence of
modifies the behavior of the growth factor . For the second model
where unparticle co-exists with cold dark matter, the growth factor has a new
approximation and
is a function of . Thus the growth factor of unparticle is quite
different from that of usual dark matter. These information can help us know
more about unparticle and the early evolution of the Universe.Comment: 6pages, 4 figures, accepted for publication in Eur. Phys. J.
Band structure model of magnetic coupling in semiconductors
We present a unified band structure model to explain magnetic ordering in
Mn-doped semiconductors. This model is based on the - and - level
repulsions between the Mn ions and host elements and can successfully explain
magnetic ordering observed in all Mn doped II-VI and III-V semiconductors such
as CdTe, GaAs, ZnO, and GaN. This model, therefore, provides a simple guideline
for future band structure engineering of magnetic semiconductors.Comment: 4+ pages, 5 figure
Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum
Hydrogen embrittlement is a complex phenomenon, involving several length- and timescales, that affects a large class of metals. It can significantly reduce the ductility and load-bearing capacity and cause cracking and catastrophic brittle failures at stresses below the yield stress of susceptible materials. Despite a large research effort in attempting to understand the mechanisms of failure and in developing potential mitigating solutions, hydrogen embrittlement mechanisms are still not completely understood. There are controversial opinions in the literature regarding the underlying mechanisms and related experimental evidence supporting each of these theories. The aim of this paper is to provide a detailed review up to the current state of the art on the effect of hydrogen on the degradation of metals, with a particular focus on steels. Here, we describe the effect of hydrogen in steels from the atomistic to the continuum scale by reporting theoretical evidence supported by quantum calculation and modern experimental characterisation methods, macroscopic effects that influence the mechanical properties of steels and established damaging mechanisms for the embrittlement of steels. Furthermore, we give an insight into current approaches and new mitigation strategies used to design new steels resistant to hydrogen embrittlement
Constraints on accelerating universe using ESSENCE and Gold supernovae data combined with other cosmological probes
We use recently observed data: the 192 ESSENCE type Ia supernovae (SNe Ia),
the 182 Gold SNe Ia, the 3-year WMAP, the SDSS baryon acoustic peak, the X-ray
gas mass fraction in clusters and the observational data to constrain
models of the accelerating universe. Combining the 192 ESSENCE data with the
observational data to constrain a parameterized deceleration parameter,
we obtain the best fit values of transition redshift and current deceleration
parameter , .
Furthermore, using CDM model and two model-independent equation of
state of dark energy, we find that the combined constraint from the 192 ESSENCE
data and other four cosmological observations gives smaller values of
and , but a larger value of than the combined
constraint from the 182 Gold data with other four observations. Finally,
according to the Akaike information criterion it is shown that the recently
observed data equally supports three dark energy models: CDM,
and .Comment: 18 pages, 8 figure
Growth and characterization of ZnO films on (11-20) sapphire substrates by atomic layer deposition using DEZn and N2O
Zinc oxide (ZnO) films were grown on (11-20) sapphire substrates at 600 A degrees C by atomic layer deposition (ALD) using diethylzinc (DEZn) and nitrous oxide (N2O). A ZnO buffer layer was deposited at low temperature (LT) prior to the growth of a bulk ZnO film for a typical growth run. In some cases, buffer-layer annealing or post-annealing treatments were employed to optimize ZnO growth. Based on the experimental results of X-ray diffractometry (XRD) and transmission electron microscopy (TEM), all the as-grown ZnO films were found to show c-axis preferred orientation with co-existence of (ZnO)ayen (sapphire) and (ZnO)ayen (sapphire) relationships in the (0001)ZnO/(11-20)sapphire hetero-interface. Typical room temperature (RT) photoluminescence (PL) spectrum of the as-grown ZnO film shows only near band edge (NBE) emissions without defect luminescence. ZnO films with improved quality were achieved by post-annealing or buffer-layer annealing treatments. In particular, buffer-layer annealing was found to improve the crystalline and optical properties of a ZnO film substantially
Probing interaction and spatial curvature in the holographic dark energy model
In this paper we place observational constraints on the interaction and
spatial curvature in the holographic dark energy model. We consider three kinds
of phenomenological interactions between holographic dark energy and matter,
i.e., the interaction term is proportional to the energy densities of dark
energy (), matter (), and matter plus dark energy
(). For probing the interaction and spatial curvature in
the holographic dark energy model, we use the latest observational data
including the type Ia supernovae (SNIa) Constitution data, the shift parameter
of the cosmic microwave background (CMB) given by the five-year Wilkinson
Microwave Anisotropy Probe (WMAP5) observations, and the baryon acoustic
oscillation (BAO) measurement from the Sloan Digital Sky Survey (SDSS). Our
results show that the interaction and spatial curvature in the holographic dark
energy model are both rather small. Besides, it is interesting to find that
there exists significant degeneracy between the phenomenological interaction
and the spatial curvature in the holographic dark energy model.Comment: 11 pages, 5 figures; to appear in JCA
Cloning of the gene and characterization of the enzymatic properties of the monomeric alkaline phosphatase (PhoX) from Pasteurella multocida strain X-73
We have identified a new phoX gene encoding the monomeric alkaline phosphatase from Pasteurella multocida X-73. This gene was not found in the published genome sequence of Pasteurella multocida pm70. Characterization of the recombinant PhoX of Pasteurella multocida X-73 showed that it is a monomeric enzyme, activated by Ca2+ and possibly secreted by the Tat pathway. These features distinguish phosphatases of the PhoX family from those of the PhoA family. All proteins of the PhoX family were found to contain a conserved motif that shares significant sequence homology with the calcium-binding site of a phosphotriesterase known as diisopropylfluorophosphatase. Site-directed mutagenesis revealed that D527 of PhoX might be the ligand bound to the catalytic calcium. This is the first report on identification of homologous sequences between PhoX and the phosphotriesterase and on the potential calcium-binding site of PhoX
Combined constraints on modified Chaplygin gas model from cosmological observed data: Markov Chain Monte Carlo approach
We use the Markov Chain Monte Carlo method to investigate a global
constraints on the modified Chaplygin gas (MCG) model as the unification of
dark matter and dark energy from the latest observational data: the Union2
dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the
cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the
cosmic microwave background (CMB) data. In a flat universe, the constraint
results for MCG model are,
()
,
()
,
()
,
()
, and ()
.Comment: 12 pages, 1figur
Corrections to Hawking-like Radiation for a Friedmann-Robertson-Walker Universe
Recently, a Hamilton-Jacobi method beyond semiclassical approximation in
black hole physics was developed by \emph{Banerjee} and
\emph{Majhi}\cite{beyond0}. In this paper, we generalize their analysis of
black holes to the case of Friedmann-Robertson-Walker (FRW) universe. It is
shown that all the higher order quantum corrections in the single particle
action are proportional to the usual semiclassical contribution. The
corrections to the Hawking-like temperature and entropy of apparent horizon for
FRW universe are also obtained. In the corrected entropy, the area law involves
logarithmic area correction together with the standard inverse power of area
term.Comment: 10 pages, no figures, comments are welcome; v2: references added and
some typoes corrected, to appear in Euro.Phys.J.C; v3:a defect corrected. We
thank Dr.Elias Vagenas for pointing out a defect of our pape
- …