635 research outputs found
Electrical and radiation characteristics of semilarge photoconductive terahertz emitters
We present experimental characterization of semilarge
photoconductive emitters, including their electrical/photoconductive
parameters and terahertz spectra. A range of emitters
were studied and fabricated on both LT-GaAs and SI-GaAs,
having a variety of electrode geometries. The spatial cone of terahertz
radiation was defined. The dependencies of the photocurrent
and the terahertz power on the bias voltage and the laser power
were determined. A Fourier-transform interferometer is used to
determine the terahertz spectra and to clarify the effects of the
substrate and electrode geometry
de Haas-van Alphen effect investigations of the electronic structure of pure and aluminum-doped MgB_2
Understanding the superconducting properties of MgB_2 is based strongly on
knowledge of its electronic structure. In this paper we review experimental
measurements of the Fermi surface parameters of pure and Al-doped MgB_2 using
the de Haas-van Alphen (dHvA) effect. In general, the measurements are in
excellent agreement with the theoretical predictions of the electronic
structure, including the strength of the electron-phonon coupling on each Fermi
surface sheet. For the Al doped samples, we are able to measure how the band
structure changes with doping and again these are in excellent agreement with
calculations based on the virtual crystal approximation. We also review work on
the dHvA effect in the superconducting state.Comment: Contribution to the special issue of Physica C "Superconductivity in
MgB2: Physics and Applications" (10 Pages with figures
Determining the global minimum of Higgs potentials via Groebner bases - applied to the NMSSM
Determining the global minimum of Higgs potentials with several Higgs fields
like the next-to-minimal supersymmetric extension of the Standard Model (NMSSM)
is a non-trivial task already at the tree level. The global minimum of a Higgs
potential can be found from the set of all its stationary points defined by a
multivariate polynomial system of equations. We introduce here the algebraic
Groebner basis approach to solve this system of equations. We apply the method
to the NMSSM with CP conserving as well as CP violating parameters. The results
reveal an interesting stationary-point structure of the potential. Requiring
the global minimum to give the electroweak symmetry breaking observed in Nature
excludes large parts of the parameter space.Comment: 10 pages, 2 figure
Multiparton Interactions in Photoproduction at HERA
The high energy photoproduction of jets is being observed at the ep collider,
HERA. It may be that the HERA centre-of-mass energy is sufficiently large that
the production of more than one pair of jets per ep collision becomes possible,
owing to the large number density of the probed gluons. We construct a Monte
Carlo model of such multiparton interactions and study their effects on a wide
range of physical observables. The conclusion is that multiple interactions
could have very significant effects upon the photoproduction final state and
that this would for example make extractions of the gluon density in the photon
rather difficult. Total rates for the production of many (i.e. > 2) jets could
provide direct evidence for the presence of multiple interactions, although
parton showering and hadronization significantly affect low transverse energy
jets.Comment: 21 pages, 8 figures include
Multibarrier tunneling
We study the tunneling through an arbitrary number of finite rectangular
opaque barriers and generalize earlier results by showing that the total
tunneling phase time depends neither on the barrier thickness nor on the
inter-barrier separation. We also predict two novel peculiar features of the
system considered, namely the independence of the transit time (for non
resonant tunneling) and the resonant frequency on the number of barriers
crossed, which can be directly tested in photonic experiments. A thorough
analysis of the role played by inter-barrier multiple reflections and a
physical interpretation of the results obtained is reported, showing that
multibarrier tunneling is a highly non-local phenomenon.Comment: RevTex, 7 pages, 1 eps figur
On a universal photonic tunnelling time
We consider photonic tunnelling through evanescent regions and obtain general
analytic expressions for the transit (phase) time (in the opaque barrier
limit) in order to study the recently proposed ``universality'' property
according to which is given by the reciprocal of the photon frequency.
We consider different physical phenomena (corresponding to performed
experiments) and show that such a property is only an approximation. In
particular we find that the ``correction'' factor is a constant term for total
internal reflection and quarter-wave photonic bandgap, while it is
frequency-dependent in the case of undersized waveguide and distributed Bragg
reflector. The comparison of our predictions with the experimental results
shows quite a good agreement with observations and reveals the range of
applicability of the approximated ``universality'' property.Comment: RevTeX, 8 pages, 4 figures, 1 table; subsection added with a new
experiment analyzed, some other minor change
A Tamm plasmon-porous GaN distributed Bragg reflector cavity
This paper reports on design, measurement and optimisation of a Tamm plasmon metal-distributed Bragg reflector (DBR) cavity for use in the green part of the visible spectrum. It uses an optimised silver layer thickness and a porous DBR created using a novel electro-chemical etching technique. This device has applications in low-cost lasers, photodetectors, and photoconductive switches for the visible wavelength range
Total photoproduction cross-section at very high energy
In this paper we apply to photoproduction total cross-section a model we have
proposed for purely hadronic processes and which is based on QCD mini-jets and
soft gluon re-summation. We compare the predictions of our model with the HERA
data as well as with other models. For cosmic rays, our model predicts
substantially higher cross-sections at TeV energies than models based on
factorization but lower than models based on mini-jets alone, without soft
gluons. We discuss the origin of this difference.Comment: 13 pages, 9 figures. Accepted for publication in EPJC. Changes
concern added references, clarifications of the Soft Gluon Resummation method
used in the paper, and other changes requested by the Journal referee which
do not change the results of the original versio
Interference, reduced action, and trajectories
Instead of investigating the interference between two stationary, rectilinear
wave functions in a trajectory representation by examining the two rectilinear
wave functions individually, we examine a dichromatic wave function that is
synthesized from the two interfering wave functions. The physics of
interference is contained in the reduced action for the dichromatic wave
function. As this reduced action is a generator of the motion for the
dichromatic wave function, it determines the dichromatic wave function's
trajectory. The quantum effective mass renders insight into the behavior of the
trajectory. The trajectory in turn renders insight into quantum nonlocality.Comment: 12 pages text, 5 figures. Typos corrected. Author's final submission.
A companion paper to "Welcher Weg? A trajectory representation of a quantum
Young's diffraction experiment", quant-ph/0605121. Keywords: interference,
nonlocality, trajectory representation, entanglement, dwell time, determinis
Evidence for charge localization in the ferromagnetic phase of La_(1-x)Ca_(x)MnO_3 from High real-space-resolution x-ray diffraction
High real-space-resolution atomic pair distribution functions of
La_(1-x)Ca_(x)MnO_3 (x=0.12, 0.25 and 0.33) have been measured using
high-energy x-ray powder diffraction to study the size and shape of the MnO_6
octahedron as a function of temperature and doping. In the paramagnetic
insulating phase we find evidence for three distinct bond-lengths (~ 1.88, 1.95
and 2.15A) which we ascribe to Mn^{4+}-O, Mn^{3+}-O short and Mn^{3+}-O long
bonds respectively. In the ferromagnetic metallic (FM) phase, for x=0.33 and
T=20K, we find a single Mn-O bond-length; however, as the metal-insulator
transition is approached either by increasing T or decreasing x, intensity
progressively appears around r=2.15 and in the region 1.8 - 1.9A suggesting the
appearance of Mn^{3+}-O long bonds and short Mn^{4+}-O bonds. This is strong
evidence that charge localized and delocalized phases coexist close to the
metal-insulator transition in the FM phase.Comment: 8 pages, 8 postscript figures, submitted to Phys. Rev.
- …