145 research outputs found

    Tracing Ghost Cavities with Low Frequency Radio Observations

    Get PDF
    We present X-ray and multi-frequency radio observations of the central radio sources in several X-ray cavity systems. We show that targeted radio observations are key to determining if the lobes are being actively fed by the central AGN. Low frequency observations provide a unique way to study both the lifecycle of the central radio source as well as its energy input into the ICM over several outburst episodes.Comment: 6 pages, 4 figures, To appear in the Proceedings of "Heating vs. Cooling in Galaxies and Clusters of Galaxies", eds. H. Boehringer, P. Schuecker, G. W. Pratt & A. Finoguenov (ESO Astrophysics Symposia, Springer-Verlag), Garching (Germany), August 200

    The temperature structure in the core of Sersic 159-03

    Full text link
    We present results from a new 120 ks XMM-Newton observation of the cluster of galaxies Sersic 159-03. In this paper we focus on the high-resolution X-ray spectra obtained with the Reflection Grating Spectrometer (RGS). The spectra allow us to constrain the temperature structure in the core of the cluster and determine the emission measure distribution as a function of temperature. We also fit the line widths of mainly oxygen and iron lines.Comment: 7 pages and 4 figures. Contribution to the proceedings of the COSPAR Scientific Assembly, session E1.2 "Clusters of Galaxies: New Insights from XMM-Newton, Chandra and INTEGRAL", july 2004, Paris (France). Accepted for publication in Advances in Space Researc

    X-ray Spectroscopy of Cooling Clusters

    Full text link
    We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.Comment: To appear in Physics Reports, 71 pages, 20 figure

    Cold Feedback in Cooling-Flow Galaxy Clusters

    Get PDF
    We put forward an alternative view to the Bondi-driven feedback between heating and cooling of the intra-cluster medium (ICM) in cooling flow galaxies and clusters. We adopt the popular view that the heating is due to an active galactic nucleus (AGN), i.e. a central black hole accreting mass and launching jets and/or winds. We propose that the feedback occurs with the entire cool inner region (5-30 kpc). A moderate cooling flow does exist here, and non-linear over-dense blobs of gas cool fast and are removed from the ICM before experiencing the next major AGN heating event. Some of these blobs may not accrete on the central black hole, but may form stars and cold molecular clouds. We discuss the conditions under which the dense blobs may cool to low temperatures and feed the black hole.Comment: 6 pages, no figures, to appear in the Proceedings of "Heating vs. Cooling in Galaxies and Clusters of Galaxies", August 2006, Garching (Germany

    Electron spin coherence in semiconductors: Considerations for a spin-based solid state quantum computer architecture

    Full text link
    We theoretically consider coherence times for spins in two quantum computer architectures, where the qubit is the spin of an electron bound to a P donor impurity in Si or within a GaAs quantum dot. We show that low temperature decoherence is dominated by spin-spin interactions, through spectral diffusion and dipolar flip-flop mechanisms. These contributions lead to 1-100 ÎŒ\mus calculated spin coherence times for a wide range of parameters, much higher than former estimates based on T2∗T_{2}^{*} measurements.Comment: Role of the dipolar interaction clarified; Included discussion on the approximations employed in the spectral diffusion calculation. Final version to appear in Phys. Rev.

    Quadrupole deformation of deuterons and final state interaction in 2H⃗(e,eâ€Čp)^2 \vec H (e,e'p) scattering on tensor polarized deuterons at CEBAF energies

    Full text link
    The strength of final state interaction (FSI) between struck proton and spectator neutron in 2H⃗(e,eâ€Čp)^2\vec{H}(e,e'p) scattering depends on the alignment of the deuteron. We study the resulting FSI effects in the tensor analyzing power in detail and find substantial FSI effects starting at still low missing momentum p_m \gsim 0.9 fm^{-1}. At larger p_m \gsim 1.5 fm^{-1}, FSI completely dominates both missing momentum distribution and tensor analyzing power. We find that to a large extent FSI masks the sensitivity of the tensor analyzing power to models of the deuteron wave function. For the transversely polarized deuterons the FSI induced forward-backward asymmetry of the missing momentum distribution is shown to have a node at precisely the same value of pmp_m as the PWIA missing momentum distribution. The position of this node is not affected by FSI and can be a tool to distinguish experimentally between different models for the deuteron wave function.Comment: 24 pages, figures available from the authors on reques

    Changes in mediators of inflammation and pro-thrombosis after 12 months of dietary modification in adults with metabolic syndrome

    Get PDF
    Objective: This study evaluated the effects of a 12-month dietary modification on indices of inflammation and pro-thrombosis in adults with metabolic syndrome (MS).Materials and methods: This longitudinal study involved 252 adults with MS recruited from the Bodija market, Ibadan and its environs. Participants were placed on 20%, 30% and 50% calories obtained from protein, total fat and carbohydrate respectively and were followed up monthly for 12 months. Anthropometry and blood pressure were measured using standard methods. Fasting plasma glucose (FPG), total cholesterol (TC), triglycerides (TG), high density lipoprotein-cholesterol (HDL-C), fibrinogen, plasminogen activator inhibitor-1 (PAI-1)], interleukin-6 (IL-6) and interleukin-10 (IL-10) were measured using spectrophotometric methods and ELISA as appropriate. Data was analysed using ANCOVA, Student’s t-test, Mann-Whitney U and Wilcoxon signed-rank tests. P-values less than 0.05 were considered significant.Results: After 6 months of dietary modification, there was a significant reduction in waist circumference (WC), while the levels of HDL-C, fibrinogen and PAI-1 were significantly increased when compared with the corresponding baseline values. However, WC and fibrinogen reduced significantly, while HDL-C and IL-10 significantly increased after 12 months of dietary modification as compared with the respective baseline values.Conclusion: Long-term regular dietary modification may be beneficial in ameliorating inflammation and pro-thrombosis in metabolic syndrome.Keywords: Dietary modification, fibrinogen, interleukins, metabolic syndrome, plasminogen activator inhibito

    On the lack of cold dust in IRAS P09104+4109 and IRAS F15307+3252 -- their spectral energy distributions and implications for finding dusty AGNs at high redshift

    Get PDF
    We present upper limits on the 850 micron and 450 micron fluxes of the warm hyperluminous (bolometric luminosity L_bol > 10^13 L_sun galaxies IRAS P09104+4109 (z=0.442) and IRAS F15307+3252 (z=0.926), derived from measurements using the SCUBA bolometer array on the James Clerk Maxwell Telescope. Hot luminous infrared sources like these are thought to differ from more normal cold ultraluminous infrared (L_bol > 10^12 L_sun) galaxies in that they derive most of their bolometric luminosities from dusty AGNs as opposed to starbursts. Such hot, dusty AGNs at high redshift are thought to be responsible for much of the mass accretion of the Universe that is in turn responsible for the formation of the supermassive black holes seen in the centres of local galaxies. The galaxy IRAS P09104+4109 is also unusual in that it is a cD galaxy in the center of a substantial cooling-flow cluster, not an isolated interacting galaxy like most ultraluminous infrared galaxies. Previously it was known to have large amounts of hot (T > 50 K) dust from IRAS observations. We now show that the contribution of cold dust to the bolometric luminosity is less than 3 per cent. Most ultraluminous infrared galaxies possess large amounts of cold dust, and it is now known that some cooling flow cluster cD galaxies do as well. Yet this object, which is an extreme example of both, does not have enough cold gas to contribute significantly to the bolometric luminosity. We outline physical reasons why this could have happened. We then provide a discussion of stategies for finding hot dusty AGNs, given the limitations on submillimetre surveys implied by this work.Comment: MNRAS in press, accepted version, minor revision

    The Physics of Cluster Mergers

    Get PDF
    Clusters of galaxies generally form by the gravitational merger of smaller clusters and groups. Major cluster mergers are the most energetic events in the Universe since the Big Bang. Some of the basic physical properties of mergers will be discussed, with an emphasis on simple analytic arguments rather than numerical simulations. Semi-analytic estimates of merger rates are reviewed, and a simple treatment of the kinematics of binary mergers is given. Mergers drive shocks into the intracluster medium, and these shocks heat the gas and should also accelerate nonthermal relativistic particles. X-ray observations of shocks can be used to determine the geometry and kinematics of the merger. Many clusters contain cooling flow cores; the hydrodynamical interactions of these cores with the hotter, less dense gas during mergers are discussed. As a result of particle acceleration in shocks, clusters of galaxies should contain very large populations of relativistic electrons and ions. Electrons with Lorentz factors gamma~300 (energies E = gamma m_e c^2 ~ 150 MeV) are expected to be particularly common. Observations and models for the radio, extreme ultraviolet, hard X-ray, and gamma-ray emission from nonthermal particles accelerated in these mergers are described.Comment: 38 pages with 9 embedded Postscript figures. To appear in Merging Processes in Clusters of Galaxies, edited by L. Feretti, I. M. Gioia, and G. Giovannini (Dordrecht: Kluwer), in press (2001

    X-Ray Spectral Constraints for z ≈ 2 Massive Galaxies: The Identification of Reflection-dominated Active Galactic Nuclei

    Get PDF
    We use the 4 Ms Chandra Deep Field-South (CDF-S) survey to place direct constraints on the ubiquity of z 2 heavily obscured active galactic nuclei (AGNs) in K 10 keV observatories. On the basis of these analyses, we estimate the space density for typical (intrinsic X-ray luminosities of L 2-10 keV 1043 erg s–1) heavily obscured and Compton-thick AGNs at z 2. Our space-density constraints are conservative lower limits but they are already consistent with the range of predictions from X-ray background models
    • 

    corecore