49 research outputs found

    Rapidly rotating Bose-Einstein condensates in an anharmonic confinement

    Full text link
    We examine a rapidly rotating Bose-Einstein condensate in an anharmonic confinement and find that many properties such as the critical rotating frequency and phase diagram are quite different from those in a harmonic trap. We investigate the phase transitions by means of average-vortex-approximation. We find that the vortex lattice consists of a vortex array with a hole in the center of the cloud as the rotating frequency Ω\Omega increases and the vortex becomes invisible when Ω\Omega reaches some value.Comment: Revtex, 5 pages, 2 figure

    On the shape of vortices for a rotating Bose Einstein condensate

    Full text link
    For a Bose-Einstein condensate placed in a rotating trap, we study the simplified energy of a vortex line derived in Aftalion-Riviere Phys. Rev. A 64, 043611 (2001) in order to determine the shape of the vortex line according to the rotational velocity and the elongation of the condensate. The energy reflects the competition between the length of the vortex which needs to be minimized taking into account the anisotropy of the trap and the rotation term which pushes the vortex along the z axis. We prove that if the condensate has the shape of a pancake, the vortex stays straight along the z axis while in the case of a cigar, the vortex is bent

    Excitation spectrum of vortex lattices in rotating Bose-Einstein condensates

    Full text link
    Using the coarse grain averaged hydrodynamic approach, we calculate the excitation spectrum of vortex lattices sustained in rotating Bose-Einstein condensates. The spectrum gives the frequencies of the common-mode longitudinal waves in the hydrodynamic regime, including those of the higher-order compressional modes. Reasonable agreement with the measurements taken in a recent JILA experiment is found, suggesting that one of the longitudinal modes reported in the experiment is likely to be the n=2n=2, m=0m=0 mode.Comment: 2 figures. Submitted to Physical Review A. v2 contains more references. No change in the main resul

    Three-dimensional vortex configurations in a rotating Bose Einstein condensate

    Full text link
    We consider a rotating Bose-Einstein condensate in a harmonic trap and investigate numerically the behavior of the wave function which solves the Gross Pitaevskii equation. Following recent experiments [Rosenbuch et al, Phys. Rev. Lett., 89, 200403 (2002)], we study in detail the line of a single quantized vortex, which has a U or S shape. We find that a single vortex can lie only in the x-z or y-z plane. S type vortices exist for all values of the angular velocity Omega while U vortices exist for Omega sufficiently large. We compute the energy of the various configurations with several vortices and study the three-dimensional structure of vortices

    Bose-Einstein condensates in strong electric fields -- effective gauge potentials and rotating states

    Full text link
    Magnetically-trapped atoms in Bose-Einstein condensates are spin polarized. Since the magnetic field is inhomogeneous, the atoms aquire Berry phases of the Aharonov-Bohm type during adiabatic motion. In the presence of an eletric field there is an additional Aharonov-Casher effect. Taking into account the limitations on the strength of the electric fields due to the polarizability of the atoms, we investigate the extent to which these effects can be used to induce rotation in a Bose-Einstein condensate.Comment: 5 pages, 2 ps figures, RevTe

    A novel method to create a vortex in a Bose-Einstein condensate

    Full text link
    It has been shown that a vortex in a BEC with spin degrees of freedom can be created by manipulating with external magnetic fields. In the previous work, an optical plug along the vortex axis has been introduced to avoid Majorana flips, which take place when the external magnetic field vanishes along the vortex axis while it is created. In the present work, in contrast, we study the same scenario without introducing the optical plug. The magnetic field vanishes only in the center of the vortex at a certain moment of the evolution and hence we expect that the system will lose only a fraction of the atoms by Majorana flips even in the absence of an optical plug. Our conjecture is justified by numerically solving the Gross-Pitaevskii equation, where the full spinor degrees of freedom of the order parameter are properly taken into account. A significant simplification of the experimental realization of the scenario is attained by the omission of the optical plug.Comment: 8 pages, 11 figure

    Quantum Depletion of an Excited Condensate

    Full text link
    We analyze greying of the dark soliton in a Bose-Einstein condensate in the limit of weak interaction between atoms. The condensate initially prepared in the excited dark soliton state is loosing atoms because of spontaneous quantum depletion. These atoms are depleted from the soliton state into single particle states with nonzero density in the notch of the soliton. As a result the image of the soliton is losing contrast. This quantum depletion mechanism is efficient even at zero temperature when a thermal cloud is absent.Comment: 4 pages; version to appear in Phys.Rev.A; change in the title plus a number of small changes in the tex

    Skyrmion Excitation in Two-Dimensional Spinor Bose-Einstein Condensate

    Full text link
    We study the properties of coreless vortices(skyrmion) in spinor Bose-Einstein condensate. We find that this excitation is always energetically unstable, it always decays to an uniform spin texture. We obtain the skyrmion energy as a function of its size and position, a key quantity in understanding the decay process. We also point out that the decay rate of a skyrmion with high winding number will be slower. The interaction between skyrmions and other excitation modes are also discussed.Comment: 5 pages, 4 figures, final version published in Phys. Rev.

    Multiply quantized vortices in trapped Bose-Einstein condensates

    Full text link
    Vortex configurations in rotating Bose-Einstein condensed gases trapped in power-law and anharmonic potentials are studied. When the confining potential is steeper than harmonic in the plane perpendicular to the axis of rotation, vortices with quantum numbers larger than one are energetically favorable if the interaction is weak enough. Features of the wave function for small and intermediate rotation frequencies are investigated numerically.Comment: 9 pages, 6 figures. Revised and extended article following referee repor

    Split vortices in optically coupled Bose-Einstein condensates

    Full text link
    We study a rotating two-component Bose-Einstein condensate in which an optically induced Josephson coupling allows for population transfer between the two species. In a regime where separation of species is favored, the ground state of the rotating system displays domain walls with velocity fields normal to them. Such a configuration looks like a vortex split into two halves, with atoms circulating around the vortex and changing their internal state in a continuous way.Comment: 4 EPS pictures, 4 pages; Some errata have been corrected and thep resentation has been slightly revise
    corecore