49 research outputs found
Rapidly rotating Bose-Einstein condensates in an anharmonic confinement
We examine a rapidly rotating Bose-Einstein condensate in an anharmonic
confinement and find that many properties such as the critical rotating
frequency and phase diagram are quite different from those in a harmonic trap.
We investigate the phase transitions by means of average-vortex-approximation.
We find that the vortex lattice consists of a vortex array with a hole in the
center of the cloud as the rotating frequency increases and the vortex
becomes invisible when reaches some value.Comment: Revtex, 5 pages, 2 figure
On the shape of vortices for a rotating Bose Einstein condensate
For a Bose-Einstein condensate placed in a rotating trap, we study the
simplified energy of a vortex line derived in Aftalion-Riviere Phys. Rev. A 64,
043611 (2001) in order to determine the shape of the vortex line according to
the rotational velocity and the elongation of the condensate. The energy
reflects the competition between the length of the vortex which needs to be
minimized taking into account the anisotropy of the trap and the rotation term
which pushes the vortex along the z axis. We prove that if the condensate has
the shape of a pancake, the vortex stays straight along the z axis while in the
case of a cigar, the vortex is bent
Excitation spectrum of vortex lattices in rotating Bose-Einstein condensates
Using the coarse grain averaged hydrodynamic approach, we calculate the
excitation spectrum of vortex lattices sustained in rotating Bose-Einstein
condensates. The spectrum gives the frequencies of the common-mode longitudinal
waves in the hydrodynamic regime, including those of the higher-order
compressional modes. Reasonable agreement with the measurements taken in a
recent JILA experiment is found, suggesting that one of the longitudinal modes
reported in the experiment is likely to be the , mode.Comment: 2 figures. Submitted to Physical Review A. v2 contains more
references. No change in the main resul
Three-dimensional vortex configurations in a rotating Bose Einstein condensate
We consider a rotating Bose-Einstein condensate in a harmonic trap and
investigate numerically the behavior of the wave function which solves the
Gross Pitaevskii equation. Following recent experiments [Rosenbuch et al, Phys.
Rev. Lett., 89, 200403 (2002)], we study in detail the line of a single
quantized vortex, which has a U or S shape. We find that a single vortex can
lie only in the x-z or y-z plane. S type vortices exist for all values of the
angular velocity Omega while U vortices exist for Omega sufficiently large. We
compute the energy of the various configurations with several vortices and
study the three-dimensional structure of vortices
Bose-Einstein condensates in strong electric fields -- effective gauge potentials and rotating states
Magnetically-trapped atoms in Bose-Einstein condensates are spin polarized.
Since the magnetic field is inhomogeneous, the atoms aquire Berry phases of the
Aharonov-Bohm type during adiabatic motion. In the presence of an eletric field
there is an additional Aharonov-Casher effect. Taking into account the
limitations on the strength of the electric fields due to the polarizability of
the atoms, we investigate the extent to which these effects can be used to
induce rotation in a Bose-Einstein condensate.Comment: 5 pages, 2 ps figures, RevTe
A novel method to create a vortex in a Bose-Einstein condensate
It has been shown that a vortex in a BEC with spin degrees of freedom can be
created by manipulating with external magnetic fields. In the previous work, an
optical plug along the vortex axis has been introduced to avoid Majorana flips,
which take place when the external magnetic field vanishes along the vortex
axis while it is created. In the present work, in contrast, we study the same
scenario without introducing the optical plug. The magnetic field vanishes only
in the center of the vortex at a certain moment of the evolution and hence we
expect that the system will lose only a fraction of the atoms by Majorana flips
even in the absence of an optical plug. Our conjecture is justified by
numerically solving the Gross-Pitaevskii equation, where the full spinor
degrees of freedom of the order parameter are properly taken into account. A
significant simplification of the experimental realization of the scenario is
attained by the omission of the optical plug.Comment: 8 pages, 11 figure
Quantum Depletion of an Excited Condensate
We analyze greying of the dark soliton in a Bose-Einstein condensate in the
limit of weak interaction between atoms. The condensate initially prepared in
the excited dark soliton state is loosing atoms because of spontaneous quantum
depletion. These atoms are depleted from the soliton state into single particle
states with nonzero density in the notch of the soliton. As a result the image
of the soliton is losing contrast. This quantum depletion mechanism is
efficient even at zero temperature when a thermal cloud is absent.Comment: 4 pages; version to appear in Phys.Rev.A; change in the title plus a
number of small changes in the tex
Skyrmion Excitation in Two-Dimensional Spinor Bose-Einstein Condensate
We study the properties of coreless vortices(skyrmion) in spinor
Bose-Einstein condensate. We find that this excitation is always energetically
unstable, it always decays to an uniform spin texture. We obtain the skyrmion
energy as a function of its size and position, a key quantity in understanding
the decay process. We also point out that the decay rate of a skyrmion with
high winding number will be slower. The interaction between skyrmions and other
excitation modes are also discussed.Comment: 5 pages, 4 figures, final version published in Phys. Rev.
Multiply quantized vortices in trapped Bose-Einstein condensates
Vortex configurations in rotating Bose-Einstein condensed gases trapped in
power-law and anharmonic potentials are studied. When the confining potential
is steeper than harmonic in the plane perpendicular to the axis of rotation,
vortices with quantum numbers larger than one are energetically favorable if
the interaction is weak enough. Features of the wave function for small and
intermediate rotation frequencies are investigated numerically.Comment: 9 pages, 6 figures. Revised and extended article following referee
repor
Split vortices in optically coupled Bose-Einstein condensates
We study a rotating two-component Bose-Einstein condensate in which an
optically induced Josephson coupling allows for population transfer between the
two species. In a regime where separation of species is favored, the ground
state of the rotating system displays domain walls with velocity fields normal
to them. Such a configuration looks like a vortex split into two halves, with
atoms circulating around the vortex and changing their internal state in a
continuous way.Comment: 4 EPS pictures, 4 pages; Some errata have been corrected and thep
resentation has been slightly revise