32 research outputs found

    A Three-Flavor AdS/QCD Model with a Back-Reacted Geometry

    Full text link
    A fully back-reaction geometry model of AdS/QCD including the strange quark is described. We find that with the inclusion of the strange quark the impact on the metric is very small and the final predictions are changed only negligibly.Comment: 10 pages, 2 figures; references revised, minor change for caption of fig

    AdS/QCD Phenomenological Models from a Back-Reacted Geometry

    Get PDF
    We construct a fully back-reacted holographic dual of a four-dimensional field theory which exhibits chiral symmetry breaking. Two possible models are considered by studying the effects of a five-dimensional field, dual to the qqˉq\bar{q} operator. One model has smooth geometry at all radii and the other dynamically generates a cutoff at finite radius. Both of these models satisfy Einstein's field equations. The second model has only three free parameters, as in QCD, and we show that this gives phenomenologically consistent results. We also discuss the possibility that in order to obtain linear confinement from a back-reacted model it may be necessary to consider the condensate of a dimension two operator.Comment: 13 pages, 4 figures, Replaced with minor correction

    Canonical Coordinates and Meson Spectra for Scalar Deformed N=4 SYM from the AdS/CFT Correspondence

    Full text link
    Five supersymmetric scalar deformations of the AdS_5xS^5 geometry are investigated. By switching on condensates for the scalars in the N=4 multiplet with a form which preserves a subgroup of the original R-symmetry, disk and sphere configurations of D3-branes are formed in the dual supergravity background. The analytic, canonical metric for each geometry is formulated and the singularity structure is studied. Quarks are introduced into two of the corresponding field theories using D7-brane probes and the pseudoscalar meson spectrum is calculated. For one of the condensate configurations, a mass gap is found and shown analytically to be present in the massless limit. It is also found that there is a stepped spectrum with eigenstate degeneracy in the limit of small quark masses. In the case of a second, similar deformation, it is necessary to understand the full D3-D7 brane interaction to study the limit of small quark masses. It is seen that simple solutions to the equations of motion for the other three geometries are unlikely to exist.Comment: 16 pages, 7 figures, references added, typos correcte

    Linear square-mass trajectories of radially and orbitally excited hadrons in holographic QCD

    Full text link
    We consider a new approach towards constructing approximate holographic duals of QCD from experimental hadron properties. This framework allows us to derive a gravity dual which reproduces the empirically found linear square-mass trajectories of universal slope for radially and orbitally excited hadrons. Conformal symmetry breaking in the bulk is exclusively due to infrared deformations of the anti-de Sitter metric and governed by one free mass scale proportional to Lambda_QCD. The resulting background geometry exhibits dual signatures of confinement and provides the first examples of holographically generated linear trajectories in the baryon sector. The predictions for the light hadron spectrum include new relations between trajectory slopes and ground state masses and are in good overall agreement with experiment.Comment: 33 pages, 5 figures, updated to the extended version published in JHEP, vector meson bulk potential and metric corrected, comments and references added, phenomenology and conclusions unchange

    Embedding Flipped SU(5) into SO(10)

    Get PDF
    We embed the flipped SU(5) models into the SO(10) models. After the SO(10) gauge symmetry is broken down to the flipped SU(5) \times U(1)_X gauge symmetry, we can split the five/one-plets and ten-plets in the spinor \mathbf{16} and \mathbf{\bar{16}} Higgs fields via the stable sliding singlet mechanism. As in the flipped SU(5) models, these ten-plet Higgs fields can break the flipped SU(5) gauge symmetry down to the Standard Model gauge symmetry. The doublet-triplet splitting problem can be solved naturally by the missing partner mechanism, and the Higgsino-exchange mediated proton decay can be suppressed elegantly. Moreover, we show that there exists one pair of the light Higgs doublets for the electroweak gauge symmetry breaking. Because there exist two pairs of additional vector-like particles with similar intermediate-scale masses, the SU(5) and U(1)_X gauge couplings can be unified at the GUT scale which is reasonably (about one or two orders) higher than the SU(2)_L \times SU(3)_C unification scale. Furthermore, we briefly discuss the simplest SO(10) model with flipped SU(5) embedding, and point out that it can not work without fine-tuning.Comment: RevTex4, 28 pages, 3 figures, typos correcte

    NGN, QCD_2 and chiral phase transition from string theory

    Get PDF
    We construct a D2-D8-D8ˉ\bar{D8} configuration in string theory, it can be described at low energy by two dimensional field theory. In the weak coupling region, the low energy theory is a nonlocal generalization of Gross-Neveu(GN) model which dynamically breaks the chiral flavor symmetry U(Nf)L×U(Nf)RU(N_f)_L \times U(N_f)_R at large NcN_c and finite NfN_f. However, in the strong coupling region, we can use the SUGRA/Born-Infeld approximation to describe the low energy dynamics of the system. Also, we analyze the low energy dynamics about the configuration of wrapping the one direction of D2 brane on a circle with anti-periodic boundary condition of fermions. The fermions and scalars on D2 branes get mass and decouple from the low energy theory. The IR dynamics is described by the QCD2QCD_2 at weak coupling. In the opposite region, the dynamics has a holographic dual description. And we have discussed the phase transition of chiral symmetry breaking at finite temperature. Finally, after performing T-duality, this configuration is related to some other brane configurations.Comment: 30 pages, 3 figures, minor change

    Baryon Mass in medium with Holographic QCD

    Full text link
    We study the baryon vertex (BV) in the presence of medium using DBI action and the force balance condition between BV and the probe branes. We note that a stable BV configuration exists only in some of the confining backgrounds. For the system of finite density, the issue is whether there is a canonical definition for the baryon mass in the medium. In this work, we define it as the energy of the deformed BV satisfying the force balance condition (FBC) with the probe brane. With FBC, lengths of the strings attached to the BV tend to be zero while the compact branes are enlongated to mimic the string. We attribute the deformation energy of the probe brane to the baryon-baryon interaction. We show that for a system with heavy quarks the baryon mass drops monotonically as a function of density while it has minimum in case of light quark system.Comment: 24 pages, 14 figures, RevTeX, Typos and errors correcte

    Localized Backreacted Flavor Branes in Holographic QCD

    Full text link
    We investigate the perturbative (in gsND8g_s N_{D8}) backreaction of localized D8 branes in D4-D8 systems including in particular the Sakai Sugimoto model. We write down the explicit expressions of the backreacted metric, dilaton and RR form. We find that the backreaction remains small up to a radial value of uâ‰Șℓs/(gsND8)u \ll \ell_s/(g_s N_{D8}), and that the background functions are smooth except at the D8 sources. In this perturbative window, the original embedding remains a solution to the equations of motion. Furthermore, the fluctuations around the original embedding, describing scalar mesons, do not become tachyonic due to the backreaction in the perturbative regime. This is is due to a cancelation between the DBI and CS parts of the D8 brane action in the perturbed background.Comment: 1+48 pages (7 figures) + 15 pages, citations added & minor correction

    Confront Holographic QCD with Regge Trajectories of vectors and axial-vectors

    Full text link
    We derive the general 5-dimension metric structure of the Dp−DqDp-Dq system in type II superstring theory, and demonstrate the physical meaning of the parameters characterizing the 5-dimension metric structure of the \textit{holographic} QCD model by relating them to the parameters describing Regge trajectories. By matching the spectra of vector mesons ρ1\rho_1 with deformed Dp−DqDp-Dq soft-wall model, we find that the spectra of vector mesons ρ1\rho_1 can be described very well in the soft-wall D3−DqD3-Dq model, i.e, AdS5AdS_5 soft-wall model. We then investigate how well the AdS5AdS_5 soft-wall model can describe the Regge trajectory of axial-vector mesons a1a_1. We find that the constant component of the 5-dimension mass square of axial-vector mesons plays an efficient role to realize the chiral symmetry breaking in the vacuum, and a small negative z4z^4 correction in the 5-dimension mass square is helpful to realize the chiral symmetry restoration in high excitation states.Comment: 9 pages, 3 figure and 3 tables, one section adde

    Holographic mesons in various dimensions

    Get PDF
    We calculate the spectrum of fluctuations of a probe Dk-brane in the background of N Dp-branes, for k=p,p+2,p+4 and p< 5. The result corresponds to the mesonic spectrum of a (p+1)-dimensional super-Yang-Mills (SYM) theory coupled to `dynamical quarks', i.e., fields in the fundamental representation -- the latter are confined to a defect for k=p and p+2. We find a universal behaviour where the spectrum is discrete and the mesons are deeply bound. The mass gap and spectrum are set by the scale M ~ m_q/g_{eff}(m_q), where m_q is the mass of the fundamental fields and g_{eff}(m_q) is the effective coupling evaluated at the quark mass, i.e. g_{eff}^2(m_q)=g_{ym}^2 N m_q^{p-3}. We consider the evolution of the meson spectra into the far infrared of three-dimensional SYM, where the gravity dual lifts to M-theory. We also argue that the mass scale appearing in the meson spectra is dictated by holography.Comment: 44 pages, 2 figures; v2: typos corrected, references adde
    corecore