440 research outputs found

    Association between milk yield and serial locomotion score assessments in UK dairy cows

    Get PDF
    This study investigated the effect of lameness, measured by serial locomotion scoring over a 12-mo period, on the milk yield of UK dairy cows. The data set consisted of 11,735 records of test-day yield and locomotion scores collected monthly from 1,400 cows kept on 7 farms. The data were analyzed in a multilevel linear regression model to account for the correlation of repeated measures of milk yield within cow. Factors affecting milk yield included farm of origin, stage of lactation, parity, season, and whether cows were ever lame or ever severely lame during the study period. Cows that had been severely lame 4, 6, and 8 mo previously gave 0.51 kg/d, 0.66 kg/d, and 1.55 kg/d less milk, respectively. A severe case of lameness in the first month of lactation reduced 305-d milk yield by 350 kg; this loss may be avoidable by prompt, effective treatment. Larger reductions can be expected when cases persist or recur. Evidence-based control plans are needed to reduce the incidence and prevalence of lameness in high yielding cows to improve welfare and productivity

    Association between somatic cell count and serial locomotion score assessments in UK dairy cows

    Get PDF
    This research investigated the effect of lameness, measured by locomotion score (LS) on the somatic cell count (SCC) of UK dairy cows. The data set consisted of 11,141 records of SCC and LS collected monthly on 12 occasions from 1,397 cows kept on 7 farms. The data were analyzed to account for the correlation of repeated measures of SCC within cow. Results were controlled for farm of origin, stage of lactation, parity, season, and test-day milk yield. Compared with the geometric mean SCC for cows with LS 1 on each farm, cows on farm 3 with LS 2 produced milk with 28,000 fewer somatic cells/mL, and cows with LS 2 on farm 6 produced milk with 30,000 fewer somatic cells/mL at a test day within 10 d. Cows that would have LS 3 six months later produced milk with 16,000 fewer somatic cells/mL compared with the geometric mean SCC for cows that would have LS 1 in 6 mo time. These results illustrate differences in disease dynamics between farms, highlight potential conflict between lameness and mastitis control measures, and emphasize the importance of developing farm-specific estimates of disease costs, and hence, health management plans in clinical practice

    Characterization and sequence mapping of large RNA and mRNA therapeutics using mass spectrometry

    Get PDF
    Large RNA including mRNA (mRNA) has emerged as an important new class of therapeutics. Recently, this has been demonstrated by two highly efficacious vaccines based on mRNA sequences encoding for a modified version of the SARS-CoV-2 spike protein. There is currently significant demand for the development of new and improved analytical methods for the characterization of large RNA including mRNA therapeutics. In this study, we have developed an automated, high-throughput workflow for the rapid characterization and direct sequence mapping of large RNA and mRNA therapeutics. Partial RNase digestions using RNase T1 immobilized on magnetic particles were performed in conjunction with high-resolution liquid chromatography–mass spectrometry analysis. Sequence mapping was performed using automated oligoribonucleotide annotation and identifications based on MS/MS spectra. Using this approach, a >80% sequence of coverage of a range of large RNAs and mRNA therapeutics including the SARS-CoV-2 spike protein was obtained in a single analysis. The analytical workflow, including automated sample preparation, can be completed within 90 min. The ability to rapidly identify, characterize, and sequence map large mRNA therapeutics with high sequence coverage provides important information for identity testing, sequence validation, and impurity analysis

    Relativistic Hydrodynamic Evolutions with Black Hole Excision

    Full text link
    We present a numerical code designed to study astrophysical phenomena involving dynamical spacetimes containing black holes in the presence of relativistic hydrodynamic matter. We present evolutions of the collapse of a fluid star from the onset of collapse to the settling of the resulting black hole to a final stationary state. In order to evolve stably after the black hole forms, we excise a region inside the hole before a singularity is encountered. This excision region is introduced after the appearance of an apparent horizon, but while a significant amount of matter remains outside the hole. We test our code by evolving accurately a vacuum Schwarzschild black hole, a relativistic Bondi accretion flow onto a black hole, Oppenheimer-Snyder dust collapse, and the collapse of nonrotating and rotating stars. These systems are tracked reliably for hundreds of M following excision, where M is the mass of the black hole. We perform these tests both in axisymmetry and in full 3+1 dimensions. We then apply our code to study the effect of the stellar spin parameter J/M^2 on the final outcome of gravitational collapse of rapidly rotating n = 1 polytropes. We find that a black hole forms only if J/M^2<1, in agreement with previous simulations. When J/M^2>1, the collapsing star forms a torus which fragments into nonaxisymmetric clumps, capable of generating appreciable ``splash'' gravitational radiation.Comment: 17 pages, 14 figures, submitted to PR

    Low body condition predisposes cattle to lameness: An 8-year study of one dairy herd

    Get PDF
    Lameness in dairy cows is a multifactorial and progressive disease with complex interactions between risk factors contributing to its occurrence. Detailed records were obtained from one United Kingdom dairy herd over an 8-yr period. Weekly locomotion scores were used to classify cows as not lame (score 1 to 2), mildly lame (score 3) and severely lame (score 4 to 5). These outcomes were used to investigate the hypothesis that low body condition score (BCS) is associated with an increased risk of lameness in dairy cows. Mixed effect multinomial logistic regression models were used to investigate the association between prior BCS and repeat lameness events during the longitudinal period of the study. Discrete time survival models were used to explore the relationship between prior BCS and first lifetime lameness events. In total, 79,565 cow weeks at risk were obtained for 724 cows. The number of lameness events was 17,114, of which 8,799 were categorized as mildly lame and 8,315 as severely lame. The median BCS was 2.25 (range, 0.75 to 4.25) and the mean body weight (BW) and age at first calving were 619.5 kg (range, 355.6 to 956.4 kg) and 25.8 mo (range, 20.5 to 37.8 mo), respectively. Subsets of the data were used in the discrete time survival models: 333 mild and 211 severe first lifetime lameness events in heifers (first lactation cows), and 81 mild and 49 severe first lifetime lameness events in cows second lactation or greater. Low BCS 3 wk before a repeated lameness event was associated with a significantly increased risk of lameness. Cows with BCS <2 were at greatest risk of mild or severe lameness, and an increased BCS above 2 was associated with a reduced risk of mild or severe lameness. Low BCS 16 or 8 wk before a first mild or severe lifetime lameness event, respectively, also had a positive association with risk of lameness in cows second lactation or greater. This provides evidence to support targeting management toward maintaining BCS to minimize the risk of lameness. Low BW (independent of BCS) and increased age at first calving above 24 mo were also associated with increased long-term risk of repeated lameness events. Overall, the model explained 62 and 60% of the variability for mild and severe lameness, respectively, highlighting the importance of these variables as risk factors and hence where management could be targeted to significantly affect reducing the risk of lameness

    A match-day analysis of the movement profiles of substitutes from a professional soccer club before and after pitch-entry.

    Get PDF
    Whilst the movement demands of players completing a whole soccer match have been well-documented, comparable information relating to substitutes is sparse. Therefore, this study profiled the match-day physical activities performed by soccer substitutes, focusing separately on the pre and post pitch-entry periods. Seventeen English Championship soccer players were monitored using 10 Hz Micromechanical Electrical Systems (MEMS) devices during 13 matches in which they participated as substitutes (35 observations). Twenty physical variables were examined and data were organised by bouts of warm-up activity (pre pitch-entry), and five min epochs of match-play (post pitch-entry). Linear mixed modelling assessed the influence of time (i.e., 'bout' and 'epoch'), playing position, and match scoreline. Substitutes performed 3±1 rewarm-up bouts∙player-1∙match-1. Compared to the initial warm-up, each rewarm-up was shorter (-19.7 to -22.9 min) and elicited less distance (-606 to -741 m), whilst relative total distances were higher (+26 to +69 m∙min-1). Relative total (+13.4 m∙min-1) and high-speed (+0.4 m∙min-1) distances covered during rewarm-ups increased (p <0.001) with proximity to pitch-entry. Players covered more (+3.2 m; p = 0.047) high-speed distance per rewarm-up when the assessed team was losing compared with when winning at the time of pitch-entry. For 10 out of 20 variables measured after pitch-entry, values reduced from 0-5 min thereafter, and substitutes covered greater (p ˂0.05) total (+67 to +93 m) and high-speed (+14 to +33 m) distances during the first five min of match-play versus all subsequent epochs. Midfielders covered more distance (+41 m) per five min epoch than both attackers (p ˂0.001) and defenders (p = 0.016). Acknowledging the limitations of a solely movement data approach and the potential influence of other match-specific factors, such findings provide novel insights into the match-day demands faced by substitute soccer players. Future research opportunities exist to better understand the match-day practices of this population

    Surgical site infection following surgery for hand trauma: a systematic review and meta-analysis

    Get PDF
    Surgical site infection is the most common healthcare-associated infection. Surgical site infection after surgery for hand trauma is associated with increased antibiotic prescribing, re-operation, hospital readmission and delayed rehabilitation, and in severe cases may lead to amputation. As the risk of surgical site infection after surgery for hand trauma remains unclear, we performed a systematic review and meta-analysis of all primary studies of hand trauma surgery, including randomized controlled trials, cohort studies, case-control studies and case series. A total of 8836 abstracts were screened, and 201 full studies with 315,618 patients included. The meta-analysis showed a 10% risk of surgical site infection in randomized control trials, with an overall risk of 5% when all studies were included. These summary statistics can be used clinically for informed consent and shared decision making, and for power calculations for future clinical trials of antimicrobial interventions in hand trauma

    Massive stars as thermonuclear reactors and their explosions following core collapse

    Full text link
    Nuclear reactions transform atomic nuclei inside stars. This is the process of stellar nucleosynthesis. The basic concepts of determining nuclear reaction rates inside stars are reviewed. How stars manage to burn their fuel so slowly most of the time are also considered. Stellar thermonuclear reactions involving protons in hydrostatic burning are discussed first. Then I discuss triple alpha reactions in the helium burning stage. Carbon and oxygen survive in red giant stars because of the nuclear structure of oxygen and neon. Further nuclear burning of carbon, neon, oxygen and silicon in quiescent conditions are discussed next. In the subsequent core-collapse phase, neutronization due to electron capture from the top of the Fermi sea in a degenerate core takes place. The expected signal of neutrinos from a nearby supernova is calculated. The supernova often explodes inside a dense circumstellar medium, which is established due to the progenitor star losing its outermost envelope in a stellar wind or mass transfer in a binary system. The nature of the circumstellar medium and the ejecta of the supernova and their dynamics are revealed by observations in the optical, IR, radio, and X-ray bands, and I discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry" Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
    • …
    corecore