29 research outputs found

    Enhanced stability of layered phases in parallel hard-spherocylinders due to the addition of hard spheres

    Full text link
    There is increasing evidence that entropy can induce microphase separation in binary fluid mixtures interacting through hard particle potentials. One such phase consists of alternating two dimensional liquid-like layers of rods and spheres. We study the transition from a uniform miscible state to this ordered state using computer simulations and compare results to experiments and theory. We conclude that (1) there is stable entropy driven microphase separation in mixtures of parallel rods and spheres, (2) adding spheres smaller then the rod length decreases the total volume fraction needed for the formation of a layered phase, therefore small spheres effectively stabilize the layered phase; the opposite is true for large spheres and (3) the degree of this stabilization increases with increasing rod length.Comment: 11 pages, 9 figures. Submitted to Phys. Rev. E. See related website http://www.elsie.brandeis.ed

    Zero-point vacancies in quantum solids

    Full text link
    A Jastrow wave function (JWF) and a shadow wave function (SWF) describe a quantum solid with Bose--Einstein condensate; i.e. a supersolid. It is known that both JWF and SWF describe a quantum solid with also a finite equilibrium concentration of vacancies x_v. We outline a route for estimating x_v by exploiting the existing formal equivalence between the absolute square of the ground state wave function and the Boltzmann weight of a classical solid. We compute x_v for the quantum solids described by JWF and SWF employing very accurate numerical techniques. For JWF we find a very small value for the zero point vacancy concentration, x_v=(1.4\pm0.1) x 10^-6. For SWF, which presently gives the best variational description of solid 4He, we find the significantly larger value x_v=(1.4\pm0.1) x 10^-3 at a density close to melting. We also study two and three vacancies. We find that there is a strong short range attraction but the vacancies do not form a bound state.Comment: 19 pages, submitted to J. Low Temp. Phy

    Climate change, malaria and neglected tropical diseases: a scoping review

    Get PDF
    To explore the effects of climate change on malaria and 20 neglected tropical diseases (NTDs), and potential effect amelioration through mitigation and adaptation, we searched for papers published from January 2010 to October 2023. We descriptively synthesised extracted data. We analysed numbers of papers meeting our inclusion criteria by country and national disease burden, healthcare access and quality index (HAQI), as well as by climate vulnerability score. From 42 693 retrieved records, 1543 full-text papers were assessed. Of 511 papers meeting the inclusion criteria, 185 studied malaria, 181 dengue and chikungunya and 53 leishmaniasis; other NTDs were relatively understudied. Mitigation was considered in 174 papers (34%) and adaption strategies in 24 (5%). Amplitude and direction of effects of climate change on malaria and NTDs are likely to vary by disease and location, be non-linear and evolve over time. Available analyses do not allow confident prediction of the overall global impact of climate change on these diseases. For dengue and chikungunya and the group of non-vector-borne NTDs, the literature privileged consideration of current low-burden countries with a high HAQI. No leishmaniasis papers considered outcomes in East Africa. Comprehensive, collaborative and standardised modelling efforts are needed to better understand how climate change will directly and indirectly affect malaria and NTDs

    First-order nematic-smectic phase transition for hard spherocylinders in the limit of infinite aspect ratio

    No full text
    We report Monte Carlo simulations of the nematic-smectic phase transition for a system of hard spherocylinders with infinite length-to-diameter ratio. A finite-size scaling analysis suggests that this system undergoes a first-order phase transition. When combined with other simulations of the phase behavior of spherocylinders, these results suggest that the nematic-smectic phase transition is first-order for all aspect ratios. This appears to rule out the possibility of a tricritical point predicted by several density-functional theories

    Numerical prediction of the melting curve of n-octane

    No full text
    We compute the melting curve of n-octane using Molecular Dynamics simulations with a realistic all-atom molecular model. Thermodynamic integration methods are used to calculate the free energy of the system in both the crystalline solid and isotropic liquid phases. The Gibbs–Duhem integration procedure is used to calculate the melting curve, starting with an initial point obtained from the free energy calculations. The calculations yield quantitatively accurate results: in the pressure range of 0–100 MPa, the calculated melting curve deviates by only 3 K from the experimental curve. This deviation falls just within the range of uncertainty of the calculations

    Simulation study of lateral diffusion in lipid-sterol bilayer mixtures

    No full text
    We employ off-lattice Monte Carlo simulations to study lateral diffusion in lipid-sterol bilayers using a two-dimensional model system which has been designed to simulate the experimental phase diagrams of both lipid-cholesterol and lipid-lanosterol systems. We focus on the effects of varying sterol concentration and temperature on the tracer diffusion coefficient, DD, which characterizes the lateral motion of single tagged lipids in a bilayer. Generally, we find that increasing the cholesterol concentration suppresses DD due to an increased conformational ordering of lipid chains. We argue that this effect competes with an increase in the average free area per lipid, which favours an increase in DD. At temperatures close to the main transition temperature, the competition between the two effects leads to intriguing behavior of DD. Overall, the model results are in excellent qualitative agreement with available experimental results for lipid-cholesterol mixtures. Additional studies of a model lipid-lanosterol system, for which experimental diffusion results are not available, predict that the presence of lanosterol has a smaller effect than cholesterol on reducing DD relative to the pure lipid system. We conclude that the molecular model employed contains the essential features required to describe many of the qualitative features of the lateral diffusion behavior in lipid-sterol systems

    Discontinuous molecular dynamics (DMD) study of heteropolymer collapse in an explicit solvent

    No full text
    In this study, we employ the discontinuous molecular dynamics simulation method to investigate the collapse properties of a single heteropolymer chain in an explicit solvent. Solvent density ρ, fraction of hydrophobic monomers n H (defined as the ratio of the number of hydrophobic monomers to the total number of monomers) and a hydrophobicity parameter λ (which controls the energy mismatch between the monomers and solvent particles) were systematically varied to examine their role in polymer collapse. The average static structure factor of the polymer was used to find the so-called θ-point characterizing the state of an ideal chain. Phase diagrams of ρ versus λ for the coil-globule transition were mapped out for different values of n H. Increasing the fraction of hydrophobic monomers n H, solvent density ρ, and hydrophobicity parameter λ were all shown to aid in stabilizing the globule phase. In an effort to explore scaling behaviour of the coil-globule phase diagram as a function of n H, and to investigate whether the phase boundaries for different n H collapsed on to one universal curve, we rescaled λ by n H (δ) λ; we determined δ = 1.72, in contrast to mean-field predictions of δ = 2.0
    corecore