631 research outputs found
Spiral anchoring in anisotropic media with multiple inhomogeneities: a dynamical system approach
Various PDE models have been suggested in order to explain and predict the
dynamics of spiral waves in excitable media. In two landmark papers, Barkley
noticed that some of the behaviour could be explained by the inherent Euclidean
symmetry of these models. LeBlanc and Wulff then introduced forced Euclidean
symmetry-breaking (FESB) to the analysis, in the form of individual
translational symmetry-breaking (TSB) perturbations and rotational
symmetry-breaking (RSB) perturbations; in either case, it is shown that spiral
anchoring is a direct consequence of the FESB.
In this article, we provide a characterization of spiral anchoring when two
perturbations, a TSB term and a RSB term, are combined, where the TSB term is
centered at the origin and the RSB term preserves rotations by multiples of
, where is an integer. When
(such as in a modified bidomain model), it is shown that spirals
anchor at the origin, but when (such as in a planar
reaction-diffusion-advection system), spirals generically anchor away from the
origin.Comment: Revised versio
Preliminary results of a study of magnetic properties in the Foum-Zguid dyke (Morocco)
This work focuses on the study of flow and propagation of magma using rock magnetic analyses along sections across the thick Jurassic dyke of Foum-Zguid (Southern Morocco). Thermomagnetic data show that Ti-poor titanomagnetite is the main magnetic carrier. Petrographic analysis shows that the main Ti phase (ilmenite) occurs either as lamellae within spinel (center of the dyke) or as isolated grains (dyke margin). Bulk magnetic properties display distinct behavior according to the distance to the dyke margin; grain size of the main magnetic carrier decreases towards the center of the dyke, while the natural remanent magnetization and the bulk magnetic susceptibility increase. Only the magnetic susceptibility ellipsoid close to the dyke margin corresponds to that usually found in thin dykes, with the magnetic foliation sub parallel to dyke margins. Maximum principal axis is in most cases either parallel or perpendicular to the intersection between the planes of magnetic foliation and dyke wall. Moreover, when this axis is perpendicular to the intersection it is associated with a more oblate magnetic susceptibility ellipsoid shape, indicating the presence of complex magnetic fabrics. The studied magnetic properties show that, in this 100 m wide thick dyke, flow structures related with dyke propagation are only preserved close to the quickly cooled dyke margins. (C) 2004 Elsevier Ltd. All rights reserved
Gravitational radiation from gamma-ray bursts as observational opportunities for LIGO and VIRGO
Gamma-ray bursts are believed to originate in core-collapse of massive stars.
This produces an active nucleus containing a rapidly rotating Kerr black hole
surrounded by a uniformly magnetized torus represented by two counter-oriented
current rings. We quantify black hole spin-interactions with the torus and
charged particles along open magnetic flux-tubes subtended by the event
horizon. A major output of Egw=4e53 erg is radiated in gravitational waves of
frequency fgw=500 Hz by a quadrupole mass-moment in the torus. Consistent with
GRB-SNe, we find (i) Ts=90s (tens of s, Kouveliotou et al. 1993), (ii)
aspherical SNe of kinetic energy Esn=2e51 erg (2e51 erg in SN1998bw, Hoeflich
et al. 1999) and (iii) GRB-energies Egamma=2e50 erg (3e50erg in Frail et al.
2001). GRB-SNe occur perhaps about once a year within D=100Mpc. Correlating
LIGO/Virgo detectors enables searches for nearby events and their spectral
closure density 6e-9 around 250Hz in the stochastic background radiation in
gravitational waves. At current sensitivity, LIGO-Hanford may place an upper
bound around 150MSolar in GRB030329. Detection of Egw thus provides a method
for identifying Kerr black holes by calorimetry.Comment: to appear in PRD, 49
The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets
This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sunâs centre, equal to half of Mercuryâs perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics
The state of the Martian climate
60°N was +2.0°C, relative to the 1981â2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
3D MHD Simulations of Laboratory Plasma Jets
Jets and outflows are thought to be an integral part of accretion phenomena
and are associated with a large variety of objects. In these systems, the
interaction of magnetic fields with an accretion disk and/or a magnetized
central object is thought to be responsible for the acceleration and
collimation of plasma into jets and wider angle flows. In this paper we present
three-dimensional MHD simulations of magnetically driven, radiatively cooled
laboratory jets that are produced on the MAGPIE experimental facility. The
general outflow structure comprises an expanding magnetic cavity which is
collimated by the pressure of an extended plasma background medium, and a
magnetically confined jet which develops within the magnetic cavity. Although
this structure is intrinsically transient and instabilities in the jet and
disruption of the magnetic cavity ultimately lead to its break-up, a well
collimated, knotty jet still emerges from the system; such clumpy morphology is
reminiscent of that observed in many astrophysical jets. The possible
introduction in the experiments of angular momentum and axial magnetic field
will also be discussed.Comment: 15 pages, 4 figures, accepted by Astrophysics and Space Science for
Special Issue High Energy Density Laboratory Astrophysics Conferenc
The <i>Ectocarpus</i> genome and the independent evolution of multicellularity in brown algae
Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related1. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1).We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic2 approaches to explore these and other aspects of brown algal biology further
Investigations of the Mars Upper Atmosphere with ExoMars Trace Gas Orbiter
The Martian mesosphere and thermosphere, the region above about 60 km, is not the primary target of the ExoMars 2016 mission but its Trace Gas Orbiter (TGO) can explore it and address many interesting issues, either in-situ during the aerobraking period or remotely during the regular mission. In the aerobraking phase TGO peeks into thermospheric densities and temperatures, in a broad range of latitudes and during a long continuous period. TGO carries two instruments designed for the detection of trace species, NOMAD and ACS, which will use the solar occultation technique. Their regular sounding at the terminator up to very high altitudes in many different molecular bands will represent the first time that an extensive and precise dataset of densities and hopefully temperatures are obtained at those altitudes and local times on Mars. But there are additional capabilities in TGO for studying the upper atmosphere of Mars, and we review them briefly. Our simulations suggest that airglow emissions from the UV to the IR might be observed outside the terminator. If eventually confirmed from orbit, they would supply new information about atmospheric dynamics and variability. However, their optimal exploitation requires a special spacecraft pointing, currently not considered in the regular operations but feasible in our opinion. We discuss the synergy between the TGO instruments, specially the wide spectral range achieved by combining them. We also encourage coordinated operations with other Mars-observing missions capable of supplying simultaneous measurements of its upper atmosphere
Search for astrophysical electron antineutrinos in Super-Kamiokande with 0.01wt% gadolinium-loaded water
We report the first search result for the flux of astrophysical electron
antineutrinos for energies O(10) MeV in the gadolinium-loaded Super-Kamiokande
(SK) detector. In June 2020, gadolinium was introduced to the ultra-pure water
of the SK detector in order to detect neutrons more efficiently. In this new
experimental phase, SK-Gd, we can search for electron antineutrinos via inverse
beta decay with efficient background rejection and higher signal efficiency
thanks to the high efficiency of the neutron tagging technique. In this paper,
we report the result for the initial stage of SK-Gd with a exposure at 0.01% Gd mass concentration. No significant excess
over the expected background in the observed events is found for the neutrino
energies below 31.3 MeV. Thus, the flux upper limits are placed at the 90%
confidence level. The limits and sensitivities are already comparable with the
previous SK result with pure-water () owing
to the enhanced neutron tagging
- âŠ