84 research outputs found
Spontaneous symmetry breaking and the limit
We point out a basic ambiguity in the limit of the connected
propagator in a spontaneously broken phase. This may represent an indication
that the conventional singlet Higgs boson, rather than being a purely massive
field, might have a gap-less branch. This would dominate the energy spectrum
for and give rise to a very weak, long-range force. The
natural interpretation is in terms of density fluctuations of the `Higgs
condensate': in the region of very long wavelengths, infinitely larger than the
Fermi scale, it cannot be treated as a purely classical c-number field.Comment: 17 pages, LaTex, small changes and some comments adde
ATLTest: A White-Box Test Generation Approach for ATL Transformations
International audienceMDE is being applied to the development of increasingly complex systems that require larger model transformations. Given that the specification of such transformations is an error-prone task, techniques to guarantee their quality must be provided. Testing is a well-known technique for finding errors in programs. In this sense, adoption of testing techniques in the model transformation domain would be helpful to improve their quality. So far, testing of model transformations has focused on black-box testing techniques. Instead, in this paper we provide a white-box test model generation approach for ATL model transformations
Barriers to Systematic Model Transformation Testing
International audienceModel Driven Engineering (MDE) techniques support extensive use of models in order to manage the increasing complexity of software systems. Approp riate abstractions of software system elements can ease reasoning and understand ing and thus limit the risk of errors in large systems. Automatic model transfor mations play a critical role in MDE since they automate complex, tedious, error- prone, and recurrent software development tasks. A fault in a transformation can introduce a fault in the transformed model, which if undetected and not removed , can propagate to other models in successive development steps. As a fault prop agates further, it becomes more difficult to detect and isolate. Since model tra nsformations are meant to be reused, faults present in them may result in many f aulty models. Model transformations constitute a class of programs with unique c haracteristics that make testing them challenging. The complexity of input and o utput data, lack of model management tools, and the heterogeneity of transformat ion languages pose special problems to testers of transformations. In this paper we identify current model transformation characteristics that contribute to the difficulty of systematically testing transformations. We present promising solu tions and propose possible ways to overcome these barriers
Enhancing modeling and change support for process families through change patterns
The increasing adoption of process-aware information systems (PAISs), together with the variability of business processes (BPs), has resulted in large collections of related process model variants (i.e., process families). To effectively deal with process families, several proposals (e.g., C-EPC, Provop) exist that extend BP modeling languages with variability-specific constructs. While fostering reuse and reducing modeling efforts, respective constructs imply additional complexity and demand proper support for process designers when creating and modifying process families. Recently, generic and language independent adaptation patterns were successfully introduced for creating and evolving single BP models. However, they are not sufficient to cope with the specific needs for modeling and evolving process families. This paper suggests a complementary set of generic and language-independent change patterns specifically tailored to the needs of process families. When used in combination with existing adaptation patterns, change patterns for process families will enable the modeling and evolution of process families at a high-level of abstraction. Further, they will serve as reference for implementing tools or comparing proposals managing process families. © 2013 Springer-Verlag.This work has been developed with the support of MICINN under the Project EVERYWARE TIN2010-18011.Ayora Esteras, C.; Torres Bosch, MV.; Weber, B.; Reichert, M.; Pelechano Ferragud, V. (2013). Enhancing modeling and change support for process families through change patterns. En Enterprise, Business-Process and Information Systems Modeling, BPMDS 2013. Springer Verlag. 246-260. https://doi.org/10.1007/978-3-642-38484-4_18S246260van der Aalst, W.M.P., ter Hofstede, A.H.M., Barros, B.: Workflow Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)Aghakasiri, Z., Mirian-Hosseinabadi, S.H.: Workflow change patterns: Opportunities for extension and reuse. In: Proc. SERA 2009, pp. 265–275 (2009)Ayora, C., Torres, V., Reichert, M., Weber, B., Pelechano, V.: Towards run-time flexibility for process families: Open issues and research challenges. In: La Rosa, M., Soffer, P. (eds.) BPM 2012 Workshops. LNBIP, vol. 132, pp. 477–488. Springer, Heidelberg (2013)Ayora, C., Torres, V., Weber, B., Reichert, M., Pelechano, V.: Change patterns for process families. Technical Report, PROS-TR-2012-06, http://www.pros.upv.es/technicalreports/PROS-TR-2012-06.pdfDadam, P., Reichert, M.: The ADEPT project: a decade of research and development for robust and flexible process support. Com. Sci. - R&D 23, 81–97 (2009)Dijkman, R., La Rosa, M., Reijers, H.A.: Managing large collections of business process models - Current techniques and challenges. Comp. in Ind. 63(2), 91–97 (2012)Döhring, M., Zimmermann, B., Karg, L.: Flexible workflows at design- and runtime using BPMN2 adaptation patterns. In: Abramowicz, W. (ed.) BIS 2011. LNBIP, vol. 87, pp. 25–36. Springer, Heidelberg (2011)Gottschalk, F.: Configurable process models. Ph.D. thesis, Eindhoven University of Technology, The Netherlands (2009)Grambow, G., Oberhauser, R., Reichert, M.: Contextual injection of quality measures into software engineering processes. Intl. J. Adv. in Software 4, 76–99 (2011)Gschwind, T., Koehler, J., Wong, J.: Applying patterns during business process modeling. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 4–19. Springer, Heidelberg (2008)Günther, C.W., Rinderle, S., Reichert, M., van der Aalst, W.M.P.: Change mining in adaptive process management systems. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 309–326. Springer, Heidelberg (2006)Hallerbach, A., Bauer, T., Reichert, M.: Context-based configuration of process variants. In: Proc. TCoB 2008, pp. 31–40 (2008)Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process models: the Provop approach. J. of Software Maintenance 22(6-7), 519–546 (2010)Kitchenham, B., Charters, S.: Guidelines for performing Systematic Literature Reviews in Software Engineering, Technical Report EBSE/EPIC–2007–01 (2007)Kulkarni, V., Barat, S., Roychoudhury, S.: Towards business application product lines. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 285–301. Springer, Heidelberg (2012)Küster, J.M., Gerth, C., Förster, A., Engels, G.: Detecting and resolving process model differences in the absence of a change log. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 244–260. Springer, Heidelberg (2008)Küster, J.M., Gerth, C., Engels, G.: Dynamic computation of change operations in version management of business process models. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp. 201–216. Springer, Heidelberg (2010)Lanz, A., Weber, B., Reichert, M.: Time patterns for process-aware information systems. Requirements Engineering, 1–29 (2012)La Rosa, M., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Questionnaire-based variability modeling for system configuration. Software and System Modeling 8(2), 251–274 (2009)Lerner, B.S., Christov, S., Osterweil, L.J., Bendraou, R., Kannengiesser, U., Wise, A.: Exception Handling Patterns for Process Modeling. IEEE Transactions on Software Engineering 36(2), 162–183 (2010)Li, C., Reichert, M., Wombacher, A.: Mining business process variants: Challenges, scenarios, algorithms. Data Knowledge & Engineering 70(5), 409–434 (2011)Marrella, A., Mecella, M., Russo, A.: Featuring automatic adaptivity through workflow enactment and planning. In: Proc. CollaborateCom 2011, pp. 372–381 (2011)Müller, D., Herbst, J., Hammori, M., Reichert, M.: IT support for release management processes in the automotive industry. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 368–377. Springer, Heidelberg (2006)Reichert, M., Weber, B.: Enabling flexibility in process-aware information systems: challenges, methods, technologies. Springer (2012)Reinhartz-Berger, I., Soffer, P., Sturm, A.: Organizational reference models: supporting an adequate design of local business processes. IBPIM 4(2), 134–149 (2009)Rosemann, M., van der Aalst, W.M.P.: A configurable reference modeling language. Information Systems 32(1), 1–23 (2007)Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow data patterns. Technical Report FIT-TR-2004-01, Queensland Univ. of Technology (2004)Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow resource patterns. Technical Report WP 127, Eindhoven Univ. of Technology (2004)Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Workflow Exception Patterns. In: Martinez, F.H., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 288–302. Springer, Heidelberg (2006)Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Object-sensitive action patterns in process model repositories. In: Muehlen, M.z., Su, J. (eds.) BPM 2010 Workshops. LNBIP, vol. 66, pp. 251–263. Springer, Heidelberg (2011)Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features - Enhancing flexibility in process-aware information systems. Data Knowledge & Engineering 66, 438–466 (2008)Weber, B., Sadiq, S., Reichert, M.: Beyond rigidity - dynamic process lifecycle support. Computer Science 23, 47–65 (2009)Weber, B., Reichert, M., Reijers, H.A., Mendling, J.: Refactoring large process model repositories. Computers in Industry 62(5), 467–486 (2011
Hadronic Parity Violation and Inelastic Electron-Deuteron Scattering
We compute contributions to the parity-violating (PV) inelastic
electron-deuteron scattering asymmetry arising from hadronic PV. While hadronic
PV effects can be relatively important in PV threshold electro- disintegration,
we find that they are highly suppressed at quasielastic kinematics. The
interpretation of the PV quasielastic asymmetry is, thus, largely unaffected by
hadronic PV.Comment: 27 pages, 13 figures, uses REVTeX and BibTe
An invariant-based method for the analysis of declarative model-to-model transformations
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-540-87875-9_3Proceedings of 11th International Conference, MoDELS 2008, Toulouse, France, September 28 - October 3, 2008In this paper we propose a method to derive OCL invariants from declarative specifications of model-to-model transformations. In particular we consider two of the most prominent approaches for specifying such transformations: Triple Graph Grammars and QVT. Once the specification is expressed in the form of invariants, the transformation developer can use such description to verify properties of the original transformation (e.g. whether it defines a total, surjective or injective function), and to validate the transformation by the automatic generation of valid pairs of source and target models.Work supported by the Spanish Ministry of Education and Science, projects MOSAIC (TSI2005-08225-C07-06), MODUWEB (TIN2006-09678) and TIN2005-06053, and an UOC-IN3 research gran
Specification-driven test generation for model transformations
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-30476-7_3Proceedings of 5th International Conference, ICMT 2012, Prague, Czech Republic, May 28-29, 2012Testing model transformations poses several challenges, among them the automatic generation of appropriate input test models and the specification of oracle functions. Most approaches to the generation of input models ensure a certain level of source meta-model coverage, whereas the oracle functions are frequently defined using query or graph languages. Both tasks are usually performed independently regardless their common purpose, and sometimes there is a gap between the properties exhibited by the generated input models and those demanded to the transformations (as given by the oracles).
Recently, we proposed a formal specification language for the declarative formulation of transformation properties (invariants, pre- and postconditions) from which we generated partial oracle functions that facilitate testing of the transformations. Here we extend the usage of our specification language for the automated generation of input test models by constraint solving. The testing process becomes more intentional because the generated models ensure a certain coverage of the interesting properties of the transformation. Moreover, we use the same specification to consistently derive both the input test models and the oracle functions.Work funded by the Spanish Ministry of Economy and Competitivity (TIN2011-24139) and by the R&D programme of Madrid Region (S2009/TIC-1650
Automatic support for product based workflow design : generation of process models from a product data model
Product Based Workflow Design (PBWD) is one of the few scientific methodologies for the (re)design of workflow processes. It is based on an analysis of the product that is produced in the workflow process and derives a process model from the product structure. Until now this derivation has been a manual task and is therefore a time-consuming and error-prone exercise. Automatic support would enhance the use of the PBWD methodology. In this paper we propose several algorithms to automatically generate process models from a product structure and we present a software tool (implemented in ProM) to support this. Finally, the properties of the resulting process models are analysed and discussed
A Model Driven Approach to the Analysis of Timeliness Properties
Abstract. The need for a design language that is rigorous but accessible and intuitive is often at odds with the formal and mathematical nature of languages used for analysis. UML and Petri Nets are a good example of this dichotomy. UML is a widely accepted modelling language capable of modelling the structural and behavioural aspects of a system. However UML lacks the mathematical foundation that is required for rigorous analysis. Petri Nets on the other hand have a strong mathematical base that is well suited for analysis of a system but lacks the appeal and ease-of-use of UML. Design in UML languages such as Sequence Diagrams and analysis in Petri Nets require on one hand some expertise in potentially two incompatible systems and their tools, and on the other a seamless transition from one system to the other. One way of addressing this impediment is to focus the software development mainly on the design language system and to facilitate the transition to the formal analysis by means of a combination of automation and tool support. The aim of this paper is to present a transformation system, which takes UML Sequence Diagrams augmented with time constraints and generates semantically equivalent Petri Nets that preserve the timing requirements. A case study on a small network is used in order to illustrate the proposed approach and in particular the design, the transformation and the analysis processes.
- …