8 research outputs found
Charge Transport in Voltage-Biased Superconducting Single-Electron Transistors
Charge is transported through superconducting SSS single-electron transistors
at finite bias voltages by a combination of coherent Cooper-pair tunneling and
quasiparticle tunneling. At low transport voltages the effect of an ``odd''
quasiparticle in the island leads to a -periodic dependence of the current
on the gate charge. We evaluate the characteristic in the framework of a
model which accounts for these effects as well as for the influence of the
electromagnetic environment. The good agreement between our model calculation
and experimental results demonstrates the importance of coherent Cooper-pair
tunneling and parity effects.Comment: RevTeX, 12 pages, 4 figure
UBVRI Light curves of 44 Type Ia supernovae
We present UBVRI photometry of 44 Type la supernovae (SNe la) observed from 1997 to 2001 as part of a continuing monitoring campaign at the Fred Lawrence Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics. The data set comprises 2190 observations and is the largest homogeneously observed and reduced sample of SNe la to date, nearly doubling the number of well-observed, nearby SNe la with published multicolor CCD light curves. The large sample of [U-band photometry is a unique addition, with important connections to SNe la observed at high redshift. The decline rate of SN la U-band light curves correlates well with the decline rate in other bands, as does the U - B color at maximum light. However, the U-band peak magnitudes show an increased dispersion relative to other bands even after accounting for extinction and decline rate, amounting to an additional ∼40% intrinsic scatter compared to the B band
Estabelecimento de ciclo de cura de pré-impregnados aeronáuticos Establishment of cure cycle of aeronautic prepregs
Os compósitos poliméricos podem ser produzidos via moldagem em autoclave, onde as condições de processamento podem ser otimizadas a partir do conhecimento fÃsico-quÃmico da matriz polimérica. A evolução da cinética da reação de cura ocorre simultaneamente com as modificações no comportamento reológico do sistema polimérico, sendo comum denominar o fenômeno de comportamento reo-cinético. O presente trabalho tem como objetivo conhecer os parâmetros de cura, cinéticos e reológicos, de três diferentes sistemas de pré-impregnados de resina epóxi (cura a 177 °C), conhecidos como F161, F584 e 8552, hoje usados na indústria aeronáutica brasileira. Este estudo foi realizado com o auxÃlio das técnicas de DSC e reologia, utilizando-se análises dinâmicas e isotérmicas. Com isso, foi possÃvel estabelecer a ordem de reação e a cinética de cura dos sistemas estudados. Neste estudo, foram utilizados como modelos matemáticos o de ordem n e o autocatalÃtico com ordem total de aproximadamente 2. A temperatura de gel foi de ~100 °C, e o tempo de gel correspondente foi de 135 segundos. A partir do conhecimento da cinética de cura e dos parâmetros reológicos dos sistemas de pré-impregnados foi possÃvel estabelecer um ciclo de cura destinado à consolidação das peças aeronáuticas via moldagem em autoclave.<br>Autoclave molding produces polymer composites, where the processing conditions can be optimized with physicochemical knowledge of the polymeric matrix. The cure reaction evolves simultaneously with changes in rheology, which is normally refered to as rheo-kinetic behavior. With the knowledge of the appropriate cure cycle one can identify the steps in which pressure should be applied and when to raise the temperature. This paper is aimed at investigating the cure, kinetics and rheological parameters of three prepreg epoxy systems, namely F161, F584 and 8552, which are currently used in the Brazilian aeronautic industry. Differential scanning calorimetry (DSC) and rheological techniques have been used, both in the isothermal and dynamic modes. Kinetics data were obtained from dynamic and isothermal DSC, with rheological measurements being carried out during the cure. The mathematical models used were the nth order reaction model and the autocatalytic model with order of 2. The gel temperature was ~100 °C, and the corresponding gelification time was 135 s. With the determination of the kinetics for the cure and of the rheological parameters of the prepreg systems, a cure cycle should be established that led to high-performance composites using the autoclave molding
Recommended from our members
Concept of Operations for OSIRIS-REx Optical Navigation Image Planning
Optical navigation (OpNav) is a critical subsystem of the OSIRIS-REx asteroid sample return mission, which operated in the vicinity of near-Earth asteroid (101955) Bennu from August 2018 through April 2021. A substantial amount of mission resources across multiple subsystems and institutions is required to ensure that the OpNav data are successfully acquired. The KinetX OpNav team, part of the Flight Dynamics System (FDS), is responsible for performing required analysis to develop the OpNav operations plans; requesting, reviewing and verifying the plans; and ultimately using the image data for critical navigation operations. The FDS team, responsible for the mission navigation, is operated by KinetX Aerospace with management and operations support from NASA’s Goddard Space Flight Center. The Science Processing and Operations Center (SPOC), located at the University of Arizona’s Lunar and Planetary Laboratory, is responsible for generating the planning products for all science and most OpNav data. These plans are integrated into the spacecraft sequences, tested, and commanded by the Mission Support Area (MSA) at Lockheed Martin Space. To ensure mission-critical navigation image data are successfully acquired, the plan is developed through a waterfall of planning cycles over the course of 3 months prior to onboard plan execution. During the initial strategic planning for a mission phase, detailed analysis is performed by the OpNav team to conceptualize the concept of operations (ConOps) for image data collection. This phase OpNav Narrative is included along with other strategic planning documents for the key ground segment stakeholders to review and provide feedback. The detailed OpNav plans get defined in the tactical planning cycle, which spans 8 to 3 weeks before the week-long integrated sequence is executed on-board the spacecraft. During the tactical cycle, the initial OpNav Request is submitted along with the science requests, kicking off development of the science and OpNav plans. Once the initial plan is drafted, interfaces are exercised so that the plan can be reviewed and iterated, if necessary. A rigorous schedule is followed by the planning teams during the implementation cycle, spanning the last 18 days before uplink, to ensure all the necessary integration, testing, and reviewing can occur on time. The development of the OpNav planning ConOps, including responsibilities, interfaces, timelines, and procedures, took extensive collaboration across mission elements and institutions. The process was robust throughout the 137 weeks of continuous Optical Navigation Operations at Bennu, which concluded on April 9th, 2021.Public domain articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]