6 research outputs found
Inter-layer Hall effect in double quantum wells subject to in-plane magnetic fields
We report on a theoretical study of the transport properties of two coupled
two-dimensional electron systems subject to in-plane magnetic fields. The
charge redistribution in double wells induced by the Lorenz force in crossed
electric and magnetic fields has been studied. We have found that the
redistribution of the charge and the related inter-layer Hall effect originate
in the chirality of diamagnetic currents and give a substantial contribution to
the conductivity.Comment: 7 RevTex pages, 4 figures, appendix added and misprint in Eq. (11)
correcte
Magnetoresistance and electronic structure of asymmetric GaAs/AlGaAs double quantum wells in the in-plane/tilted magnetic field
Bilayer two-dimensional electron systems formed by a thin barrier in the GaAs
buffer of a standard heterostructure were investigated by magnetotransport
measurements. In magnetic fields oriented parallel to the electron layers, the
magnetoresistance exhibits an oscillation associated with the depopulation of
the higher occupied subband and the field-induced transition into a decoupled
bilayer. Shubnikov-de Haas oscillations in slightly tilted magnetic fields
allow to reconstruct the evolution of the electron concentration in the
individual subbands as a function of the in-plane magnetic field. The
characteristics of the system derived experimentally are in quantitative
agreement with numerical self-consistent-field calculations of the electronic
structure.Comment: 6 pages, 5 figure
Orbital effect of in-plane magnetic field on quantum transport in chaotic lateral dots
We show how the in-plane magnetic field, which breaks time-reversal and
rotational symmetries of the orbital motion of electrons in a heterostructure
due to the momentum-dependent inter-subband mixing, affects weak localisation
correction to conductance of a large-area chaotic lateral quantum dot and
parameteric dependences of universal conductance fluctuations in it.Comment: 4 pages with a figur